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Thymosin beta 4 is a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes.

Thymosin beta 4 gene silencing promotes differentiation of neural stem cells whereas thymosin beta 4 overexpression initiates

cortical folding of developing brain hemispheres. A role of thymosin beta 4 in malignant gliomas has not yet been investigated.

We analysed thymosin beta 4 staining on tissue microarrays and performed interrogations of the REMBRANDT and the Cancer

Genome Atlas databases. We investigated thymosin beta 4 expression in seven established glioma cell lines and seven glioma-

initiating cell lines and induced or silenced thymosin beta 4 expression by lentiviral transduction in LNT-229, U87MG and GS-2

cells to study the effects of altered thymosin beta 4 expression on gene expression, growth, clonogenicity, migration, invasion,

self-renewal and differentiation capacity in vitro, and tumorigenicity in vivo. Thymosin beta 4 expression increased with grade

of malignancy in gliomas. Thymosin beta 4 gene silencing in LNT-229 and U87MG glioma cells inhibited migration and

invasion, promoted starvation-induced cell death in vitro and enhanced survival of glioma-bearing mice. Thymosin beta 4

gene silencing in GS-2 cells inhibited self-renewal and promoted differentiation in vitro and decreased tumorigenicity

in vivo. Gene expression analysis suggested a thymosin beta 4-dependent regulation of mesenchymal signature genes and

modulation of TGFb and p53 signalling networks. We conclude that thymosin beta 4 should be explored as a novel molecular

target for anti-glioma therapy.
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Introduction
Glioblastomas are highly aggressive primary brain tumours

thought to originate from neural stem or progenitor cells (Galli

et al., 2004; Zheng et al., 2008; Liu et al., 2010; Chen et al.,

2012). Despite recent advances in multimodal treatment

approaches including surgery, radiotherapy and chemotherapy,

the median overall survival of patients with glioblastoma is still
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poor, i.e. in the range of 16 months in selected clinical trial popu-

lations (Stupp et al., 2005; Gilbert et al., 2011), and �11 months

in population-based studies (Johnson and O’Neill, 2012). Recently,

subgroups of malignant gliomas have been defined according to

gene expression signatures. Increased invasiveness and poor prog-

nosis were found to be associated with a mesenchymal gene

expression signature, whereas expression of genes associated

with neural differentiation was associated with improved patient

survival (Verhaak et al., 2010). Furthermore, the expression of a

mesenchymal gene signature was reported to be characteristic of a

subpopulation of glioma cells termed glioma stem-like or glioma-

initiating cells (Carro et al., 2010). These cells are believed to

promote malignancy and evasion from conventional therapies

(Singh et al., 2004; Bao et al., 2006; Chen et al., 2012).

Glioma-initiating cells exhibit features of neural stem cells (Galli

et al., 2004), and induction of differentiation in the glioma-

initiating cells subpopulation might be a potential therapeutic

approach to glioblastoma.

Thymosin beta 4 (TB4) is the most abundantly expressed

member of the b-thymosin family of small pleiotropic polypep-

tides. Beta-thymosins were first isolated from calf thymus and

thought to be thymic hormones (Low et al., 1979). However,

the first reported cellular function of b-thymosins was buffering

of actin monomers (Safer et al., 1990). To date, numerous func-

tions beyond actin sequestering have been identified. For example,

TB4 gene silencing in the heart led to a reduced number of

mesenchymally differentiated cells and decreased migration of dif-

ferentiated cells from the epicardial stem cell niche into the heart

muscle, both during development and healing of ischaemic

wounds (Bock-Marquette et al., 2004). Furthermore, TB4 activates

epicardial stem cells and promotes reprogramming of cardiac

fibroblasts to induced pluripotent stem cells (Smart et al., 2007;

Qian et al., 2012). In the developing brain, TB4 expression is

tightly associated with neurogenesis and regulates expansion of

the stem cell pool of the early neuroepithelium (Roth et al.,

1999; Wirsching et al., 2012), whereas TB4 gene silencing pro-

motes the differentiation of neural stem cells in vitro (Mollinari

et al., 2009). A role for TB4 has also been suggested in certain

brain diseases. TB4 expression increased after focal brain ischaemia

(Vartiainen et al., 1996), and after transient global hypoxia (Kim

et al., 2006) in the rat, whereas proteomic analysis showed

increased TB4 protein levels in the CSF of patients with

Creutzfeldt-Jakob disease (Mohring et al., 2005). The pivotal

role of TB4 in promoting cellular invasion and its role in brain

development prompted us to investigate a putative involvement

of TB4 in glioma pathogenesis.

Materials and methods

Tissue specimen and tissue microarray
construction
Immunohistochemical stainings for TB4 expression were performed on

a tissue microarray comprising 89 surgical glioma samples collected

from patients who were treated at the Department of Neurosurgery,

University Hospital of Zurich, Zurich, Switzerland between June 2003

and May 2009. All tumours were classified and graded according to

the WHO classification of tumours of the CNS. For semi-quantitative

analysis of TB4 staining intensity, we graded TB4 staining arbitrarily

from 0–3 (0, negative; 1, weak; 2, moderate; 3, strong) for each

tumour compartment, i.e. endothelial cells, inflammatory host cells

and tumour cells. Compartments were identified based on morph-

ology. Confirmatory immunohistological stainings were performed

using antibodies against CD31 for endothelial cells, CD45 and

CD11b for inflammatory host cells, and glial fibrillary acidic protein

(GFAP) for tumour cells. In addition, we graded TB4 staining arbitrarily

for each tissue sample from 0–3, based on the fraction of moderately

or strongly TB4-positive cells (0, 520%; 1, 20–50%; 2, 50–80%; 3,

480% TB4-positive cells, respectively). Examples for weak/negative

staining versus moderate/strong staining are given in Supplementary

Fig. 1A.

Database interrogations
Publically available microarray and clinical data of patients with glioma

were acquired from the REpository for Molecular BRAin Neoplasia

DaTa (REMBRANDT) using the data set available on 19 May 2011

(NCI, 2005), and from The Cancer Genome Atlas (TCGA) using the

data set available on 15 December 2012 (McLendon et al., 2008).

Gene expression and Kaplan-Meier survival data were queried follow-

ing the REMBRANDT site’s instructions for ‘advanced search’ and

through the caINTEGRATOR homepage (http://caintegrator2.nci.nih.

gov) following the site’s instructions. The sample group for gene

expression was restricted to WHO grade II/III gliomas (n = 184) and

glioblastomas (n = 220). Survival data for the Kaplan-Meier analysis

using the REMBRANDT database were retrieved for glioblastoma

(n = 182). Samples with a 0.5-fold downregulation or a 2-fold upre-

gulation of the target gene compared with median expression levels

were defined as up- or downregulated, the other samples were

defined as intermediate.

Kaplan-Meier survival data from TCGA (n = 465) were queried via

the R2 microarray analysis and visualization platform (http://hgser-

ver1.amc.nl/cgi-bin/r2/main.cgi). The averaged messenger RNA

expression staining was scaled to 4775.5 for TMSB4X and 12.5 for

TMSB4Y. The cut-off for the highest impact on survival was 7617.2

for TMSB4X and within the male population (n = 311) 9.5 for

TMSB4Y.

For analysis of functional gene interactions, combined confidence

scores were generated for each putative interaction by integration of

experimental and predicted data using the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING) Version 9.0 at

http://string-db.org (Szklarczyk et al., 2011). Highest confidence set-

tings were applied, thus merely integrating combined scores higher

than 0.900. Cluster analysis was performed by application of the

MCL algorithm.

Cell culture
LN-18, LNT-229 and LN-308 glioma cell lines were kindly provided by

Dr. N. de Tribolet (Lausanne, Switzerland). T98G, U87MG and A172

glioma cell lines were purchased from the American Type Culture

Collection. The TU159 cell line was generated in our laboratory

(Bahr et al., 2003). GS-2, GS-3, GS-4, GS-5, GS-7, GS-8 and GS-9

glioma-initiating cells lines were provided by Dr. Katrin Lamszus

(Gunther et al., 2008). All conventional cell lines were cultured in

Dulbecco’s modified Eagle’s medium (Radnor) containing 10% foetal

calf serum, 2 mM glutamine and penicillin (100 IU/ml)/streptomycin

(100 mg/ml). All glioma-initiating cells lines were cultured in
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Neurobasal�-A medium supplemented with B27 (Invitrogen), 10 ng/ml

basic fibroblast growth factor (bFGF), and 10 ng/ml epidermal growth

factor (EGF) (BD Biosciences). Growth factors were replenished twice

weekly. Conditioned supernatants were generated by seeding 2 million

cells in T75 flasks overnight, then washing three times and adding

serum-free Dulbecco’s modified Eagle’s medium for conditioning

for 72 h.

Lentiviral constructs
A short-hairpin RNA expression cassette for targeting TB4 or a

scrambled sequence were cloned into a custom-made SEW-based

lentivirus (Demaison et al., 2002) under control of the U6 promoter.

For targeting TB4, the following sequences were used:

5’-CTGAGATCGAGAAATTCGATAAG-3’, which is highly conserved

and orthologous in mouse and human TMSB4X (Smart et al., 2007);

and the sequence 5’-TGGCTGAGATCGAGAAATT-3’ (si_2). Both con-

structs were designed to co-express monomeric dsRed under the con-

trol of the SFFV promoter to assess the efficacy of stable transduction.

The original GFP cassette from the SEW vector was excised. For TB4

overexpression, the coding sequence of human TMSB4X was cloned

into a custom-made SEW-based lentivirus under the control of the

SFFV promoter (Demaison et al., 2002), followed by the coding

sequences of a 2A-autocleavage site, monomeric dsRed and WPRE.

Lentivirus was produced and titred (Tabatabai et al., 2010) and target

cells were transduced at a multiplicity of infection of 100 transducing

lentiviral particles per cell.

Quantitative reverse transcriptase
polymerase chain reaction
Total RNA was prepared using the NucleoSpin System (Macherey-

Nagel) and complementary DNA transcribed using SuperScript� II re-

verse transcriptase (Invitrogen). For real-time PCR, complementary

DNA amplification was monitored using SYBR� Green chemistry on

the 7300 Real time PCR System (Applied Biosystems). The conditions

for these PCR reactions were: 40 cycles of 95�C for 15 s, 60�C for

1 min, using the following specific primers: Arf1 fwd: 5’-GACCACGAT

CCTCTACAAGC-3’, Arf1 rv: 5’-TCCCACACAGTGAAGCTGATG-3’;

TB4 fwd: 5’-AAACCCGATATGGCTGAGAT-3’, TB4 rv: 5’-TGCTTCTC

CTGTTCAATCGT-3’, TB15A fwd: 5’-GCCTCCCAACAGCAGATTTC

GA-3’, TB15A rv: 5’-ACAGCATCTGCCATCTGGAACA-3’, TB15B

fwd: 5’-TCCTCCAAAGAGCAGATTTCAG-3’, TB15B rv: 5’-GCATCTG

CCATTTGGAATTTACA-3’, TGFB1 fwd: 5’-GCCCTGGACACCAACT

ATTG-3’, rev: 5’-CGTGTCCAGGCTCCAAATG-3’, TGFB2 fwd: 5’- AA

GCTTACACTGTCCCTGCTGC-3’, rev: 5’-TGTGGAGGTGCCATCAATA

CCT-3’. Arf1 transcript levels were used as a house-keeping reference

for relative quantification of messenger RNA expression levels using

the �CT method. The samples for normal brain complementary DNA

were purchased from Ambion (Applied Biosystems).

Reporter assay
TGF-b-induced signalling was assessed by reporter assays using the

SMAD-binding elements (SBE) containing reporter plasmid pGL3-

SBE4-Luc (Zawel et al., 1998) kindly provided by Dr. B. Vogelstein,

and the TGF-b-responsive plasminogen activator inhibitor 1 promoter

fragment containing the reporter plasmid pGL2-3TP-Luc (Wrana et al.,

1992), which was kindly provided by Dr. J. Massague. Dual luciferase/

renilla assays were performed with co-transfection of 150 ng of the

respective reporter construct and 20 ng of pRL-CMV. Luciferase

activity was measured using a Mithras LB 940 microplate reader

(Berthold) and normalized to constitutive renilla activity (pRL-CMV).

Immunoblot analysis
Denatured whole protein lysates (20 mg/lane) were separated on 10–

13% acrylamide gels. After transfer to nitrocellulose (Bio-Rad), blots

were blocked in PBS containing 5% skimmed milk and 0.05% Tween

20 and incubated overnight at 4�C with primary antibodies, washed in

PBS and incubated for 1 h at room temperature with secondary anti-

bodies. Primary antibodies were anti-TB4 (Immundiagnostik), anti-ILK

(Lab Force) and anti-(p)Akt (Bioconcept). Visualization of protein

bands was accomplished using horseradish peroxidase-coupled sec-

ondary antibodies (Santa Cruz Biotechnology) and the enhanced

chemiluminescence technique (Thermo Fisher Scientific).

Enzyme-linked immunosorbent assay
Conditioned supernatants were generated as described above. Next,

1 N HCl was added for 20 min to activate latent TGF-b. TGF-b1 and

TGF-b2 protein levels were assessed by a commercially available ELISA

kit (R&D Systems). Streptavidin–horseradish peroxidase was added for

20 min, then after washing substrate solution, was added for another

20 min and optical density measured at 450 nm using a Mithras LB 940

microplate reader (Berthold). The standard curve was calculated using

recombinant TGF-b1 and TGF-b2 at pre-defined concentrations, and a

computer generated 4-PL curve-fit (Excel, Microsoft).

Flow cytometry
All flow cytometry analyses were performed using a CyAN ADP flow

cytometer (Beckman Coulter). For cell cycle analysis, cells were

washed, resuspended in PBS and fixed by slowly adding ice-cold etha-

nol to a final concentration of 70% and incubation on ice for 60 min.

Cells were washed and resuspended in buffer (PBS containing 0.5%

bovine serum albumin, 0.02% NaN3, 1 mM EDTA) at 100 000 cells per

30 ml. Cells were incubated with 5 ml of a custom-made stock solution

containing 2.5 mg/ml propidium iodide (Sigma-Aldrich), 0.1 mg/ml

RNase A (Roth) and 0.05% TritonTM X-100 (Sigma-Aldrich) for

30 min at 4�C and subsequently washed and resuspended in buffer.

For separation of cells by DNA content, a PE laser was used to meas-

ure the peak plane. For annexinV-propidium iodide analysis, cells were

stained with propidium iodide (Sigma-Aldrich) and pacific blue-labelled

annexinV (Lucerna).

Matrix metalloproteinase activity assay
For assessment of matrix metalloproteinase (MMP) activity, the fluor-

escence resonance energy transfer-based SensoLyte� 520 MMP

Substrate Sampler Kit (Anaspec) was used. In brief, conditioned super-

natants of LNT-229 glioma cells were incubated with the substrate

QXL520TM-�-Abu-Pro-Cha-Abu-Smc-His-Ala-Dab(5-FAM)-Ala-Lys-

NH238 (Smc = S-methyl-L-cysteine). Fluorescence emission was mea-

sured in a Mithras LB 940 microplate reader (Berthold) at excitation/

emission = 490/535 nm. A standard curve for quantification was

obtained using the pre-cleaved fragment 5-FAM-Pro-Leu-OH at

predefined concentrations.

Affymetrix gene chip analysis
Total RNA was extracted from LNT-229 and U87MG glioma cell lines

transfected either with short interfering TB4 or scrambled control small
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interfering RNA using the RNeasy� Kit (Qiagen). High RNA quality, as

indicated by RNA integrity numbers of 49, was assured by using

the Agilent 2100 Bioanalyzer (Agilent). RNA samples were processed

using the 3’ IVT express kit (Affymetrix) starting from a total amount

of 100 ng RNA. Labelled complementary RNA was hybridized to

Affymetrix GeneChip Human genome U133 2.0 plus arrays, followed

by washing, labelling and scanning according to standard protocols.

The GeneSpring software (Agilent) was used for determination of

normalized gene expression values.

Growth, Alamar blue, clonogenicity
and sphere formation assays
For growth assays, 1000 LNT-229 or U87MG cells, or 5000 GS-2 cells

per well were seeded in 24-well plates and triplicates were counted

daily. Viable cells were identified using trypan blue dye exclusion.

For Alamar blue assays (Invitrogen), 1000 cells were seeded in

96-well plates and supplemented with 10% Alamar blue for 1 h.

Fluorescence emission of metabolized Alamar blue was measured in

a Mithras LB 940 microplate reader (Berthold at excitation/emission

= 560/600 nm). For clonogenic survival assays of LNT-229 or U87MG,

500 cells were seeded in triplicate in 6-well plates. After 20 days, cells

were stained using 0.5% crystal violet solution. Colonies of 50 or more

cells were counted manually at �10 magnification.

For sphere formation assays, GS-2 cells were initially separated from

each other mechanically and with accutase (Chemie Brunschwig). Cells

were then seeded in Neurobasal� medium supplemented with growth

factors in 6-well plates at a density of 1 cell per 4 ml and sphere for-

mation was assessed by manually counting spheres at �10 magnifi-

cation after 20 days. Sphere volume was calculated based on

diameters of spheres assessed in 12 high power fields using ImageJ

1.40g software (NIH).

Migration and invasion assays
Migration of glioma cells was measured in transwell migration assays

(24 wells, 8 mm pore size; BD Biosciences). In brief, 5 � 104 cells in

200ml serum-free Dulbecco’s modified Eagle’s medium were added to

each transwell insert. NIH 3T3-conditioned medium (700 ml) was used

as a chemo-attractant in the lower wells. NIH 3T3 fibroblasts secrete a

variety of growth factors, and therefore the conditioned medium from

these cells is commonly used as a chemo-attractant (Albini et al.,

1987). After an incubation period of 16 h, the cells on the lower

side of the membrane were fixed in ice-cold methanol at 4�C, stained

with hemalaun and sealed on slides. Quantification of cell migration

was expressed as the mean count of stained cells in 11 random fields

of each membrane.

For invasion assays, glioma spheroids were generated by incubating

1000 cells for 72 h in 96-well plates precoated with 1% Noble Agar

(Difco Laboratories). Spheroids with a diameter of �200 mm were

embedded into a collagen matrix containing collagen type I

(Invitrogen), 10% foetal calf serum and 10% NaHCO3 in a 96-well

plate. Sprouting of spheroids was monitored by daily photographs or

by time-lapse video microscopy using a JuLI image viewer

(NanoEnTek). For quantitation, the area covered by sprouting cells

and the median invaded distance of 50 cells were assessed using the

ImageJ 1.40g software (NIH). The spheroid margin at Day 0 was used

as a reference point for measurement of the invaded distance of

sprouting cells. For measurement of the invasion area, the area cov-

ered by the spheroid at Day 0 was subtracted from the overall area

that was covered on subsequent days.

Differentiation assay
For the induction of differentiation, glioma-initiating cells were cul-

tured in full Neurobasal� medium supplemented with the indicated

foetal calf serum concentrations for 5 days. Differentiation was

assessed by counting cells that exhibited an adherent phenotype and

by immunostaining for GFAP or nestin.

Animal studies
All experiments were performed according to the Swiss animal protec-

tion law. CD1nu/nu mice were purchased from Charles River

Laboratories. Mice aged 8–12 weeks were anaesthetized and placed

in a stereotaxic fixation device. A burr hole was drilled in the skull

2 mm lateral and 1 mm posterior to the bregma. The needle of a

Hamilton syringe was introduced into a depth of 3 mm (Tabatabai

et al., 2007). LNT-229 (75 � 104), U87MG (105) or GS-2 (2 � 105)

cells were resuspended in PBS and were injected into the right stri-

atum. GS-2 cells were dissociated before injection. Animal experiments

with LNT-229 gliomas were performed twice. Animal experiments

with U87MG and GS-2 gliomas were performed once. Animals were

assessed clinically three times per week and sacrificed at a clinical score

of 2 (Supplementary Table 1).

Immunocytology, histology and
immunohistochemistry
Primary antibodies were monoclonal mouse anti-Nestin (Zytomed,

1:100), polyclonal rabbit anti-GFAP (Dako, 1:1000), monoclonal

mouse anti-NeuN (Chemicon, 1:100), polyclonal rabbit anti-b-III-

Tubulin (R&D Systems), monoclonal mouse anti-CD31 (Dako, 1:50),

monoclonal mouse anti-CD45 (Dako, 1:50), polyclonal rabbit anti-

CD11b (Abcam, 1:50) and polyclonal rabbit anti-thymosin b4

(Immundiagnostik, 1:100). For immunocytochemistry, cells were

grown on poly-D-lysine-coated cell culture slides (BD Biosciences)

and fixed in paraformaldehyde. Neurospheres were centrifuged onto

glass slides using a Shandon Cytospin 4 (Thermo Fisher Scientific),

dried briefly and fixed in paraformaldehyde. Cells were permeabilized

with 0.2% TritonTM X-100 and 10% normal horse or swine serum

(Vector) was used for blocking. For conventional histology, 5 mm par-

affin sections were stained with haematoxylin and eosin. For immuno-

histochemistry, deparaffinized and rehydrated sections were boiled in

EDTA buffer, pretreated with 1% H2O2, blocked in 10% swine serum

or blocking solution (Candor Biosciences). Biotinylated secondary

antibodies, streptavidin and diaminobenzidine were obtained from

Dako and used according to standard procedures.

Statistics
Quantitative data are expressed as mean or median and SEM, as

indicated. For column statistics, unpaired t-test or one-way ANOVA

followed by Tukey’s post hoc test was performed. The in vitro experi-

ments reported here were performed at least three times in triplicate

with similar results. For survival statistics Gehan-Breslow-Wilcoxon test

was performed. All statistical analyses were performed using Prism 5

(GraphPad Software).
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Results

Thymosin beta 4 is overexpressed in
malignant gliomas
We investigated TB4 levels in malignant gliomas in vivo by immu-

nohistochemistry on a tissue microarray containing tissue cores

from 89 gliomas of different WHO grades (17 WHO grade II,

24 WHO grade III, and 48 WHO grade IV) and four normal

brain tissue control samples. Representative stainings are shown

in Fig. 1A. The highest TB4 levels were observed in glioblastomas

(Fig. 1B). We analysed TB4 staining in three different compart-

ments: tumour cells, inflammatory host cells and endothelial cells

(Supplementary Fig. 1A–D). This compartment-specific analysis

revealed a correlation of TB4 staining intensities with increasing

WHO grade in tumour cells (Fig. 1C), but not in inflammatory

host cells or endothelial cells (Supplementary Fig. 1C and D). In

glioblastoma samples, the TB4 staining intensity was higher in

tumour cells than in host or endothelial cells (Fig. 1D). We also

correlated TB4 staining data with clinical parameters

(Supplementary Table 2). In glioblastomas, TB4 levels did not

differ between younger versus older patients (Supplementary

Fig. 1E), but TB4 levels were higher in recurrent versus primary

glioblastomas (Supplementary Fig. 1F). For correlation with clinical

outcome, we subdivided samples by low (0–2) versus high (42)

arbitrary TB4 levels. Median overall survival was lower in the

group of patients with strongly TB4 positive glioblastomas (TB4

low: 15.1 months versus TB4 high: 9.9 months, P5 0.05)

(Fig. 1E). A more detailed investigation of TB4 staining and its

role for clinical outcome in histological glioma subtypes of WHO

grades II or III was precluded because of sample size.

To expand and validate our immunohistochemical TB4 data in

malignant gliomas, we performed a REMBRANDT database inter-

rogation (NCI, 2005). TB4 messenger RNA expression in gliomas

correlated with increasing WHO grade (Supplementary Fig. 1G)

and glioblastoma patients with low (50.5-fold of median) TB4

expressing tumours had longer overall survival than patients with

high (42-fold of median) TB4 expressing glioblastomas (Fig. 1F).

Correlation of TB4 expression with survival in glioblastoma was fur-

ther confirmed by a TCGA database interrogation (Supplementary

Fig. 1H).

Considering that the gene coding for TB4 is located on the

X-chromosome prompted us to further analyse gender differences

and expression of the homologous gene TMSB4Y. REMBRANDT

and TCGA analyses yielded no differences of TMSB4X expression

in female or male patients. Moreover, TMSB4Y was expressed, if

at all, only at very low levels in both data sets, although with a

significant correlation to survival in the male population (data not

shown).

Next, we analysed TB4 messenger RNA expression in seven

established glioma cell lines (T98G, U87MG, LN-18, LNT-229,

LN-308, A172, Tu159) and in seven glioma-initiating cells cultures

(GS-2, GS-3, GS-4, GS-5, GS-7, GS-8, GS-9) using real-time

reverse transcription-PCR analysis. TB4 was overexpressed up to

10-fold in all glioma-initiating cells cultures except for GS-4, and

up to 22-fold in all long-term glioma cell lines relative to normal

brain tissue samples used for reference (Supplementary Fig. 2).

Immunocytochemistry indicated nuclear and cytoplasmic localiza-

tion of TB4 in glioma cells, with a specific increase in cytoplasmic

protrusions (Fig. 1G).

Thymosin beta 4 gene silencing in
glioma cells enhances apoptotic
cell death and decelerates
clonogenic growth
To investigate the biological role of TB4 functions in glioma cells,

we performed lentiviral short hairpin RNA-mediated gene silencing

(short interfering TB4) in two cell lines with low and high TB4

expression levels, i.e. LNT-229 and U87MG (Supplementary

Fig. 2, Fig. 2A and B). Assessment of dsRed co-expression

revealed lentiviral transduction efficacies close to 100%

(Supplementary Fig. 3). TB4 gene silencing did not affect the mes-

senger RNA expression levels of thymosin beta 15 (TB15), another

member of the b-thymosin family (data not shown), thus validat-

ing the specificity of the short hairpin RNA sequence used for tar-

geting TB4 and excluding compensatory upregulation of TB15. In

addition, we overexpressed TB4 in LNT-229 and U87MG cells by

lentiviral vectors (Supplementary Fig. 4A).

The growth of LNT-229 cells was increased upon TB4 overex-

pression (Supplementary Fig. 4B) and decreased after TB4 gene

silencing (Supplementary Fig. 4C), resulting in doubling times

during exponential growth of 20.2 h for TB4-overexpressing cells

compared with 22.1 h for empty vector control cells; and 25.6 h

for short interfering TB4 transfected cells compared with 21.0 h for

scrambled cells. Reduced growth of LNT-229 cells depleted of

TB4 was paralleled by reduced metabolic activity (Supplementary

Fig. 4D).

One of the key features of cancer cells is survival under nutri-

ent-restricted conditions (Hanahan and Weinberg, 2011). Thus,

we analysed cell viability by trypan blue exclusion in LNT-229

and U87MG glioma cells after 7 days of serum deprivation.

Trypan blue-positive cells, i.e. the dead cell fraction was increased

upon TB4 gene silencing (Fig. 2C). The effect of TB4 gene silen-

cing on cell death under nutrient-restricted conditions was con-

firmed using a second short hairpin RNA sequence (Supplementary

Fig. 5A–D). Flow cytometry-based analysis of the cell cycle indi-

cated a 5-fold increase of the sub-G0/1 fraction in short interfer-

ing TB4 transfected cells whereas the cell cycle distribution upon

starvation in the viable cell fractions was similar in both scrambled

and short interfering TB4 LNT-229 cells (Fig. 2D and E). In serum-

containing cell culture medium, however, dead cell fractions did

not differ in scrambled and in short interfering TB4 transfected

cells. We then performed annexinV and propidium iodide flow

cytometry in scrambled and short interfering TB4 glioma cells to

analyse whether enhanced starvation-induced cell death of TB4-

depleted cells was paralleled by an increase in apoptosis. The per-

centage of apoptotic, i.e. annexinV-positive cells was 3.2-fold

(48% versus 15%) higher in LNT-229 short interfering TB4 and

2.2-fold (61% versus 28%) higher in U87MG short interfering

TB4 transfected cells. The percentage of dead, i.e. propidium

iodide-positive cells was 3.9-fold (43% versus 11%) higher in
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Figure 1 TB4 is overexpressed in high-grade gliomas and low TB4 expression correlates with better outcome. (A) Representative images

of TB4 immunostainings of a tissue microarray comprising 89 gliomas of different WHO grades (II–IV) and four normal brain control

samples (NB). (B) x-axis = WHO grade; y-axis = TB4 staining intensity (arbitrary units; *P50.05, **P5 0.01). (C) TB4 immunoreactivity

scores in the tumour cell compartment of WHO grade II–IV patients’ samples (***P50.001). (D) TB4 immunoreactivity scores in

glioblastoma (WHO grade IV) stratified for tumour cells (TC), endothelial cells (EC) and inflammatory host cells (HC) (***P50.001).

(E) Survival analysis of patients with glioblastomas (WHO grade IV) subdivided by low (0–2) versus high (42) TB4 staining intensity.

(F) REMBRANDT survival analysis of patients with glioblastoma subdivided by low (50.5-fold, green, n = 6) versus high (42.0-fold, blue,

n = 14) TB4 messenger RNA expression. As a reference, all glioblastoma samples are depicted in grey (n = 182). (G) Immunocytology of

LNT-229 glioma cells stained for TB4 (green). Nuclei were stained with DAPI (blue). Scale bars = 100 mm (A), 10 mm (E).
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Figure 2 TB4 gene silencing promotes starvation-induced apoptotic cell death of LNT-229 and U87MG glioma cells. (A and B)

Quantitative reverse transcription-PCR (A) and immunoblot (B) analysis of lentiviral TB4 gene silencing (si) relative to scrambled control

short hairpin RNA (scr). (C–F) Ten thousand cells per well were seeded in 6-well plates overnight and cultured in serum-free medium for

7 days. (C) LNT-229 scrambled and silenced cells were counted manually using trypan blue for identification of dead cells. Values are

expressed as per cent of total scrambled (mean � SEM; **P5 0.01, ***P50.001, ****P50.0001). (D and E) Propidium iodide-based

flow cytometric cell cycle analysis of LNT-229 scrambled (D) and silenced (E) cells. (F) LNT-229 and U87MG scrambled and silenced cells

were stained with annexinV and propidium iodide for identification of live (double negative), dead (propidium iodide-positive) and

apoptotic (annexinV-positive) cell fractions. (G–L) LNT-229 scrambled and silenced cells were studied by colony formation assay (G and J),

for single colony morphology (H and K) and FITC-phalloidin staining of actin filaments (I and L). Arrowheads in I and L indicate cellular

protrusions. Scale bars = 1 cm (G and J), 100mm (H and K) and 25 mm (I and L).
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LNT-229 short interfering TB4 and 2.6-fold (55% versus 21%)

higher in U87MG short interfering TB4 transfected cells (Fig. 2F).

Next, we analysed clonogenicity, single colony morphology and

actin filament staining in LNT-229 scrambled and short interfering

TB4 transfected cells (Fig. 2G–L). After TB4 gene silencing, the

number of colonies was not reduced, but single colonies were

smaller (Fig. 2G and J) and more compact (Fig. 2H and K) and cel-

lular protrusions were reduced in size and number (Fig. 2I and L).

Similar data were observed in U87MG (data not shown).

Thymosin beta 4 gene silencing inhibits
migration and invasion of glioma cells
in vitro
The accumulation of TB4 in cytoplasmic protrusions (Fig. 1G) and

the marked reduction of size and number of cytoplasmic protrusions

in LNT-229 short interfering TB4 transfected cells (Fig. 2L)

prompted us to investigate the effects of TB4 on migration and

invasion in LNT-229 and U87MG cells. We analysed the invasive-

ness of LNT-229 scrambled or short interfering TB4 spheroids

(Fig. 3A and B, Supplementary Fig. 5E and F), and U87MG

scrambled or short interfering TB4 spheroids (Fig. 3C and D,

Supplementary Video 1) in a 3D collagen spheroid invasion assay

and assessed invasion after 24 h (Fig. 3 E–H, Supplementary Fig. 5G

and H) and after 48 h (Fig. 3I–L, Supplementary Fig. 5I and J) in a

serum-containing collagen matrix. The area covered by invading

cells was reduced by 2.7-fold in LNT-229 short interfering TB4

and by 4.2-fold in U87MG short interfering TB4 transfected cells

(Fig. 3M). The invaded distance was reduced by 2.3-fold in LNT-

229 short interfering TB4 and by 4.1-fold in U87MG short interfer-

ing TB4 transfected cells (Fig. 3N). Similar results were observed

after targeting TB4 with a second short hairpin RNA sequence in

LNT-229 (Supplementary Fig. 5K and L). Transwell migration of

LNT-229 and U87MG cells was decreased upon TB4 gene silencing

and increased upon TB4 overexpression (Supplementary Fig. 6), but

no effect of TB4 overexpression on spheroid invasion was observed

(data not shown).

Thymosin beta 4 gene silencing
prolongs symptom-free survival of
glioma-bearing mice in vivo
We orthotopically implanted LNT-229 or U87MG scrambled or

short interfering TB4 transfected cells into nude mice. The latency

until the onset of neurological symptoms was prolonged in animals

bearing TB4-depleted experimental gliomas (Fig. 4A and B). The

median time interval until the onset of symptoms was increased

from 44 to 56 days (P50.05) in LNT-229 glioma-bearing ani-

mals, and 45 to 54 days (P50.05) in U87MG glioma-bearing

animals. Histological analysis revealed smaller and less invasive

tumours in short interfering TB4 gliomas, and tumour volume

was markedly reduced to �20–30% at Day 28 (Fig. 4C). At the

onset of neurological symptoms, however, tumour size was similar

in LNT-229 scrambled and short interfering TB4 gliomas

(Supplementary Fig. 7).

A thymosin beta 4-dependent
transcriptional network involves
modulation of TGF-b signalling and
regulates mesenchymal signature
genes in glioma cells
Next, we aimed at analysing the mechanism by which TB4 exerts

its effects in glioma cells. First, we assessed integrin-linked kinase

(ILK), Akt and MMP2 expression after TB4 knockdown, because

stabilization of ILK, phosphorylation of Akt and consecutive

regulation of MMP2 expression by TB4 have been suggested in

other cell types (Bock-Marquette et al., 2004; Fan et al., 2009).

ILK protein levels were not decreased in LNT-229 short interfering

TB4 transfected glioma cells and there was no effect of TB4 gene

silencing on Akt phosphorylation on Ser473 (Supplementary

Fig. 8A). We reasoned that phosphoinositide 3-kinase (PI3K) sig-

nalling might compensate for effects of short interfering TB4 on

ILK levels, because PI3K is a major ILK activator. Indeed, upon

treatment with the PI3K inhibitor wortmannin ILK protein levels

were reduced in TB4-depleted cells, but with no effect on Akt

phosphorylation. MMP2 protein levels also remained unaffected

upon TB4 gene silencing (Supplementary Fig. 8B), but MMP ac-

tivity was reduced in an assay that detects the activity of multiple

MMPs (MMP1/2/3/7/8/9/12/13/14) (Supplementary Fig. 8C).

These results indicate that TB4 stabilizes ILK in glioma cells and

alters MMP activity, but does not affect Akt phosphorylation.

To understand the molecular network controlled by TB4 in

glioma cells, we performed an Affymetrix chip-based transcrip-

tome analysis of LNT-229 scrambled and short interfering TB4

transfected cells and retrieved a list of regulated candidate

genes. At a 2.0-fold change cut-off, one thousand seven hundred

and twenty-four probe sets were differentially detected, including

162 that were directed against a total of 116 complementary

DNAs coding for transcription factors (Supplementary Table 3).

Submission of all differentially expressed transcription factors to

the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) identified two main clusters (Fig. 5A). One cluster

involved mainly genes interacting with TP53 (green nodes), the

other cluster was centred around the downstream TGF-b signalling

modulators EP300 and FOS (red nodes). The latter cluster further-

more comprised the TGF-b signalling modulators CITED1 and

CITED2, and interacted with a third cluster comprising the TGF-

b signalling modulators SMAD6 and SMAD7 (brown nodes). All

six identified TGF-b signaling modulators were downregulated in

the Affymetrix gene chip in short interfering TB4 glioma cells.

As we had observed enhanced apoptosis and decreased migra-

tion and invasion upon TB4 gene silencing (Figs 2 and 3,

Supplementary Fig. 5), we performed a gene ontology (GO) ana-

lysis with TB4-dependently differentially regulated genes. Gene

ontology annotation identified 34 genes involved in migration

(Supplementary Table 4) and 75 genes involved in apoptosis

(Supplementary Table 5), with an overlap of 14 genes that are

annotated to both processes, including the TGF-b signalling modu-

lators TGFB2, THBS1, CITED2 and SMAD7. Furthermore, inhibi-

tors of TGF-b signalling including ONECUT2 and FBN1 were
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upregulated in LNT-229 short interfering TB4 transfected

cells. Conversely, TGF-b signalling transcriptional target genes

including SNAI2, IRX1, FBXO32, DAPK1, ATG5, ATG7, TGFA,

PDGFC, COL1A2 and FN1 were downregulated on TB4 gene

silencing.

The central role of TGF-b signalling in gliomas prompted us to

further validate it by quantitative real time PCR, ELISA and

reporter assays. TGFB1 messenger RNA levels were reduced in

LNT-229 short interfering TB4 transfected cells by 2.2-fold and

in U87MG short interfering TB4 transfected cells by 3.6-fold

(Supplementary Fig. 9A). TGFB2 messenger RNA levels were

reduced in LNT-229 short interfering TB4 transfected cells by

4.3-fold and in U87MG short interfering TB4 transfected cells by

18.3-fold, respectively (Supplementary Fig. 9B). The levels of TGF-

b1 and TGF-b2 protein in the supernatants of LNT-229 short inter-

fering TB4 were decreased by 1.4-fold and 4.5-fold, respectively

Figure 3 TB4 gene silencing inhibits invasion of LNT-229 and U87MG glioma cells. (A–L) Lentivirally transduced LNT-229 or U87MG cells

expressing short hairpin RNAs targeted against TB4 (si) or a scrambled control (sscr) were placed in a 3D collagen I matrix (A–D) and

evaluated after 24 h (E–H) and 48 h (I–L); scale bar = 200mm. (M and N) The area covered by invading cells (M), or the median distance

invaded by the 50 most peripheral cells (N) were measured for quantitation after 48 h (mean � SEM; ***P50.001, ****P5 0.0001).
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(Supplementary Fig. 9C and D). Furthermore, decreased TGF-b
signalling in LNT-229 short interfering TB4 transfected cells was

confirmed using a dual luciferase/renilla reporter assay

(Supplementary Fig. 9E).

Inhibition of TGF-b signalling inhibits stem cell properties and

promotes a more differentiated gene expression pattern of glioma

cells due to decreased expression of the Sry-related HMG-box

factor SOX2 (Ikushima et al., 2009) and SOX2 was downregu-

lated in TB4-depleted LNT-229 cells (Supplementary Table 3).

Thus, we compared the expression signature of TB4-depleted

cells with recently established signatures of gliomas that take

into account levels of differentiation (Freije et al., 2004; Phillips

et al., 2006; Carro et al., 2010; Verhaak et al., 2010). A compari-

son of the signature of TB4-depleted cells with the signatures

suggested by Freije et al. (2004) revealed upregulation of the

neurogenesis signature genes BMP2 and HEY2, whereas the inva-

sive signature genes COL6A3, THBS1 and FN1 and the prolifera-

tive signature genes TOP2A, CDKN3, PTTG1 and CENPF were

downregulated (Freije et al., 2004). A comparison with the signa-

tures suggested by Phillips et al. (2006) revealed an upregulation

of the proneural signature gene GABBR1, silencing of the marker

genes of the proliferative signature IQGAP3 and HMMR and silen-

cing of the mesenchymal signature genes COLA4A1 and COL4A2

(Phillips et al., 2006). Of note, gene silencing of IQGAP3, HMMR,

COLA4A1 and COL4A2 is also a feature of the proneural signa-

ture, as defined by the centroids of k-means clustering (Phillips

et al., 2006). A shift of the messenger RNA expression pattern

of LNT-229 short interfering TB4 transfected cells towards a pro-

neural signature was furthermore apparent when comparing the

TB4-depletion signature with the signatures established by

Verhaak et al. (2010) (Supplementary Table 6).

Based on the sample data classified as proneural, proliferative or

mesenchymal in previous studies, Carro et al. (2010) defined a

subset of transcription factors that function as master regulators

of a mesenchymal expression signature, while suppressing a pro-

neural signature in malignant gliomas (Freije et al., 2004; Nigro

et al., 2005; Phillips et al., 2006; Carro et al., 2010). Comparison

of this comprehensive data set with the set of genes that were

differentially regulated in LNT-229 short interfering TB4 trans-

fected cells revealed an upregulation of 20 genes of the proneural

signature and silencing of 23 proliferative signature genes

(Supplementary Table 7). Furthermore, 10 transcription factors

that had been predicted by an ARACNe-based master regulator

algorithm to be frequently connected to the mesenchymal signa-

ture, or had consensus enrichment in the promoters of mesenchy-

mal signature genes (Carro et al., 2010), respectively, were

downregulated in LNT-229 short interfering TB4 transfected cells

(Fig. 5B). Conversely, the inhibitor of the mesenchymal signature

SATB1 was upregulated upon TB4 gene silencing (Fig. 5B). These

data indicate that TB4 gene silencing inhibits the mesenchymal

signature and shifts the balance towards a more differentiated

expression pattern. In line with this, a set of 20 genes that are

Figure 4 TB4 gene silencing delays the onset of neurological symptoms and slows tumour growth in orthotopic glioma models. (A and B)

7.5 � 104 LNT-229 (A) or 105 U87MG glioma cells (B) were implanted in the striata of CD1nu/nu mice. Cells were transduced with a

lentivirus coding for short hairpin RNA targeted against TB4 messenger RNA (si), or a scrambled control sequence (scr). Animals (n = 7 per

group) were sacrificed upon onset of neurological symptoms. (C) Haematoxylin and eosin staining of LNT-229 tumours from animals

(n = 3 per group) sacrificed on Day 28 post implantation for histological analysis. Scale bar = 200 mm.
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downregulated during in vitro astrocyte development were also

downregulated in LNT-229 short interfering TB4 transfected cells

(Supplementary Table 8) (Cahoy et al., 2008).

Thymosin beta 4 gene silencing in
GS-2 cells reduces stemness in vitro
and in vivo
The analyses summarized above suggested that TB4 promotes the

mesenchymal signature in glioma cells. To further analyse the func-

tional relevance of this finding, we investigated the role of TB4

in the glioma stem-like cell line GS-2 (Gunther et al., 2008). We

efficiently depleted TB4 expression in GS-2 cells as assessed by

quantitative reverse transcription-PCR and immunoblot (Fig. 6A

and B). TB4 depletion decreased cellular growth (Fig. 6C) and

sphere formation (Fig. 6D). The sphere volume was reduced in

GS-2 short interfering TB4 to 16.12 � 1.97% (P50.0001; Fig. 6E).

Next, we assessed the differentiation capacity of GS-2 short

interfering TB4 versus GS-2 scrambled cells using increasing

foetal calf serum concentrations as a stimulus to induce differen-

tiation. Foetal calf serum treatment yielded a maximum of

5.8 � 0.9-fold increase (P50.0001) of cells exhibiting an adher-

ent, differentiated phenotype in GS-2 cells transfected with short

interfering TB4 (Fig. 6F). Cells that acquired this phenotype ex-

pressed GFAP, but not nestin. Moreover, there was a reduction of

Figure 5 The differentially regulated transcriptional network in TB4-depleted glioma cells involves master regulators of mesenchymal

transition. (A) Transcription factors that were differentially regulated in LNT-229 glioma cells after lentiviral TB4 gene silencing were

determined by Affymetrix gene chip analysis. Functional interactions were analysed using the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING). Interactions with confidence scores of 0.9 or higher were integrated to the depicted interactome. Clusters were

determined by the MCL algorithm at low inflation and are represented by different node colours (green, red, brown, yellow and blue).

Inter-cluster edges are represented by dashed-lines. (B) Master molecules of the transcriptional network that promotes mesenchymal

transformation of malignant gliomas were assessed by master regulator analysis (MRA) and regulon analysis (DNA binding) (Carro et al.,

2010). Depicted are those genes that were at least 2-fold upregulated (red) or downregulated (green) after TB4 depletion in LNT-229

cells, as assessed by transcriptome analysis. Asterisk indicates inhibitor of the mesenchymal signature.

Thymosin beta 4 in glioblastoma Brain 2014: 137; 433–448 | 443

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1


Figure 6 TB4 gene silencing in GS-2 cells inhibits self-renewal, promotes differentiation and improves symptom-free survival in vivo.

(A and B) Quantitative reverse transcription-PCR (A) and immunoblot (B) analysis of lentiviral TB4 gene silencing (si) relative to scrambled

control short hairpin RNA (scr) in GS-2 neurosphere cultures. (C) Acute growth assay. Five thousand GS-2 scrambled or silenced cells were

seeded in 24-well plates and counted at indicated time points by trypan blue exclusion. (D and E) Neurosphere formation assay. GS-2

scrambled or silenced cells were seeded at single cell dilution (1 cell/4 ml). Sphere numbers (D) and volume (E) were assessed on Day 21.

(F) Differentiation of GS-2 scrambled or silenced cells was induced by the addition of foetal calf serum (FCS) at indicated concentrations.

Cells exhibiting an adherent phenotype were quantified after 5 days. (G) Immunocytology was performed in spheres using antibodies for

nestin and GFAP. Positive cells were counted in at least 10 high power fields. (H and I) Representative images of D–F (H), and G (I).

(J) 2 � 105 GS-2 scrambled or silenced cells were implanted in the striata of CD1nu/nu mice (n = 7 for each group). Animals bearing GS-2

scrambled gliomas were sacrificed upon onset of clinical symptoms. GS-2 silenced glioma-bearing mice did not develop symptoms until

Day 140 (error bars = SEM); Scale bars = 100mm (H), 50 mm (I); *P50.05, **P5 0.01, ***P50.001, ****P50.0001.
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nestin-positive cells in GS-2 cells transfected with short interfering

TB4 spheres as compared with GS-2 cells transfected with

scrambled RNA, whereas the number of cells expressing GFAP

was increased (Fig. 6G). Representative images of GS-2 scrambled

and short interfering TB4 transfected cells grown as spheres or

supplemented with 5% foetal calf serum for 7 days are shown

in Fig. 6H and representative stainings of GS-2 scrambled and

short interfering TB4 transfected cells are outlined in Fig. 6I.

Finally, we assessed the tumorigenicity of GS-2 short interfering

TB4 transfected cells in vivo. Even after implantation of 200 000

cells, we did not observe any neurological symptoms in GS-2 short

interfering TB4-glioma-bearing mice until Day 140 whereas GS-2

scrambled-glioma-bearing mice developed neurological symptoms

within 69–87 (median 78) days (Fig. 6J). After 140 days, we

sacrificed the asymptomatic GS-2 short interfering TB4-glioma-

bearing animals and analysed the brains by histology. Tumour

formation had occurred only in three of seven animals (Fig. 7A

and B). The expression of nestin was reduced (Fig. 7C and D).

Expression of GFAP was similar in both groups (Fig. 7E and F). We

did not detect the neural lineage marker NeuN in GS-2 scrambled

gliomas (Fig. 7G) whereas NeuN-positive cells were present in

GS-2 short interfering TB4 gliomas (Fig. 7H).

Discussion
TB4 is a key regulator of cancer hallmarks including migration,

invasion, cell survival and stem cell activation (Bock-Marquette

et al., 2004; Smart et al., 2007; Fan et al., 2009). In neural

stem cells, TB4 gene silencing promotes neural differentiation,

whereas overexpression of TB4 in the developing brain leads to

an expansion of the neuroglial stem and progenitor cell pool and

induction of a mesenchymal phenotype (Mollinari et al., 2009;

Wirsching et al., 2012). The subpopulation of stem-like cells in

gliomas termed glioma-initiating cells exhibits features of neuro-

glial progenitor cells, including self-renewal and multilineage

differentiation, and expresses a mesenchymal gene signature

(Galli et al., 2004; Bao et al., 2006; Carro et al., 2010; Chen

et al., 2012). The role of TB4 during brain development and for

mesenchymal transformation prompted us to hypothesize a role of

TB4 in malignant glioma.

As a first step to investigate a role for TB4 in malignant glioma,

we performed tissue microarray, REMBRANDT and TCGA analyses

(Fig. 1 and Supplementary Fig. 1). TB4 expression correlated with

ascending grades of malignancy and with survival. Tissue micro-

array data suggested that the correlation of TB4 staining intensity

with increasing WHO grade was because of an increase of TB4

staining intensity within the tumour cell compartment (Fig. 1 and

Supplementary Fig. 1). Thus, we focused our further analyses on

TB4 in glioma cells.

Both, long-term glioma and glioma-initiating cells lines

expressed high levels of TB4 in vitro (Supplementary Fig. 2).

Silencing of TB4 in long-term glioma cells promoted apoptotic

cell death upon nutrient depletion (Fig. 2 and Supplementary

Fig. 5), inhibited migration and invasion (Fig. 3 and

Supplementary Fig. 5) and increased survival of glioma-bearing

nude mice (Fig. 4). At the onset of clinical symptoms, LNT-229

short interfering TB4 transfected gliomas resembled LNT-229

scrambled gliomas in terms of tumour size and invasiveness, sug-

gesting a compensation for TB4 gene silencing in an advanced

stages of the disease (Supplementary Fig. 7).

Alterations of the cellular morphology from spindle-like to a

more dense and adhesive pattern upon TB4 depletion suggested

altered actin dynamics to be the underlying mechanism by which

TB4 mediates its cellular functions (Fig. 2). However, enhanced

starvation-induced apoptotic cell death pointed to a functional

significance of TB4 beyond its well-established role as an actin-

buffering polypeptide (Fan et al., 2009). Thus, we reasoned that

alteration of intracellular signalling pathways may contribute to the

observed in vitro and in vivo effects of TB4 gene silencing in

glioma. To further elucidate the underlying mechanism of TB4

gene silencing-mediated effects, we first investigated known inter-

actions by which TB4 modulates cellular functions in other cell

types. During cardiac development and in migrating endothelial

cells TB4 stabilizes ILK, thus promoting Akt phosphorylation and

MMP2 expression (Bock-Marquette et al., 2004; Fan et al., 2009).

Furthermore, TB4-induced epithelial-mesenchymal transition and

malignant progression of colon adenoma to carcinoma is mediated

by ILK stabilization and activation (Huang et al., 2007). In turn,

TB4 depletion in colon cancer cells leads to reduced ILK activity,

reduced tumour volumes and cell migration (Ricci-Vitiani et al.,

2010). In LNT-229 glioma cells, ILK protein levels were not

reduced upon TB4 gene silencing, unless PI3K signalling was inhib-

ited by wortmannin. However, even strongly decreased ILK pro-

tein levels did not affect Akt phosphorylation or MMP2 protein

level (Supplementary Fig. 8) suggesting compensatory mechanisms

for downregulation of ILK.

To unravel the molecular network of TB4 in glioma cells, we

performed a genome-wide screening for genes that were differ-

entially transcribed upon TB4 gene silencing (Fig. 5). In the past

decade, several molecular subgroups of malignant gliomas based

on genetic signatures have been defined and correlated to clinical

outcome (Phillips et al., 2006; Verhaak et al., 2010). Expression of

proneural marker genes correlates with better clinical outcome

whereas mesenchymal and proliferative signatures were associated

with poor outcome (Freije et al., 2004; Phillips et al., 2006; Carro

et al., 2010). Consequently, we compared the TB4-dependently

regulated set of genes with the genetic signatures of these previ-

ously published molecular subgroups. This comparison revealed

regulation of various mesenchymal signature genes in the sense

of a shift towards a more differentiated molecular subgroup in

short interfering TB4 transfected cells (Fig. 5 and Supplementary

Tables 6 and 7).

As glioma-initiating cells more closely reflect the functional rele-

vance of a shift towards a more differentiated molecular subgroup

than long-term glioma cell lines (Galli et al., 2004; Singh et al.,

2004) we analysed the role of TB4 expression in the glioma-initi-

ating cells line GS-2 (Gunther et al., 2008). TB4 depletion in GS-2

cells inhibited self-renewal, decreased sphere size and increased

differentiation capacity in vitro (Fig. 6), and strongly reduced

tumorigenicity and increased differentiation capacity in vivo

(Fig. 7). These data are supported by previous reports suggesting

a role of TB4 for stemness during brain and cardiac development

(Bock-Marquette et al., 2004; Wirsching et al., 2012).

Thymosin beta 4 in glioblastoma Brain 2014: 137; 433–448 | 445

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt333/-/DC1


GS-4 cells share molecular features with GS-2 (Gunther et al.,

2008), but, as opposed to GS-2, GS-4 express little if any TB4

(Supplementary Fig. 2). In line with our observations on the role

of TB4 for stemness and differentiation, GS-4 cells are not tumori-

genic in nude mice, express lower levels of the progenitor marker

nestin, higher levels of the differentiation markers MAP2 and

BAI1, and exhibit an adherent growth pattern (Gunther et al.,

2008).

Functional interactome analysis of the TB4-dependently regu-

lated set of genes using STRING and subsequent cluster analysis

Figure 7 Histological analysis of GS-2 experimental gliomas. Haematoxylin and eosin (H&E) staining (A and B) and immunohisto-

chemistry using antibodies for nestin (C and D), GFAP (E and F) and NeuN (G and H). Asterisks in A indicate haemorrhage. Arrowheads in

A and B indicate tumour margins. Scale bars = 200 mm (A and B), 50 mm (C–H).
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revealed a network involving p53 and TGF-b signalling (Fig. 5). Of

note, recent studies have demonstrated that TGF-b mediates

promotion of stemness in gliomas (Anido et al., 2010), thus sug-

gesting a mechanism by which a short interfering TB4-mediated

decrease of TGF-b signalling may have decreased stemness in

GS-2 cells (Figs 6 and 7).

We further confirmed altered TGF-b signalling by data derived

from quantitative reverse transcription-PCR, ELISA and reporter

assays indicating a decreased TGF-b1 and TGF-b2 transcription

and signalling upon TB4 depletion (Supplementary Fig. 9).

One well-established function of TGF-b in gliomas is immunomo-

dulation in the tumour microenvironment (Massague, 2008).

Immunomodulation, however, is unlikely to have played a signifi-

cant role for the prolonged survival in our orthotopic xenograft

models, as these experiments were performed in immunodeficient

mice (Figs 4 and 6).

In summary, TB4 expression correlates with glioma grades and

patients’ survival, and regulates key malignant features in glioma

models, including cell survival, invasiveness and stemness.

Thereby, TB4 modulates core molecular networks including p53

and TGF-b signalling. We conclude that TB4 might be a novel

key molecule integrating multiple hallmarks and molecular net-

works in malignant gliomas and should thus be further explored

as a putative therapeutic target. To date, the only molecular in-

hibitor known to interfere with TB4 is Photorabdus toxin complex

3, which inhibits the interaction of TB4 with G-actin (Lang et al.,

2010), but inhibition of the TB4-actin interaction alone is likely to

result in activation of other cancer relevant pathways (Fan et al.,

2009). Antisense strategies for targeting gene expression are con-

ceivable, but have had limited success in cancer treatment so far.

Recently, a first antisense therapy has been approved by the

United States Food and Drug Administration to target apolipopro-

tein B in familial hypercholesterolaemia (Gotto and Moon, 2013).

Limitations for such an approach in malignant glioma include

tumour heterogeneity and the uncertainty of how efficient down-

regulation would have to be to exert activity. Yet, the design of

pharmacological inhibitors of TB4 function seems feasible, given

innovative high-throughput screening of small molecule libraries

(Zhang et al., 2009). Small molecule inhibitors could either

target TB4 function directly or its down-stream mediators. Thus,

a thorough investigation of molecular interactions in the TB4 net-

work in gliomas is needed.
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