13 research outputs found

    Recovery of labelled fertilizer nitrogen by different crop rotations

    Get PDF
    Fabrication of protein-based biomaterials is an arduous and time-consuming procedure with multiple steps. In this work, we describe a portable toolkit that integrates both cell-free protein synthesis (CFPS) and protein immobilization in one pot just by mixing DNA, solid materials, and a CFPS system. We have constructed a modular set of plasmids that fuse the N-terminus of superfolded green fluorescent protein (sGFP) with different peptide tags (poly­(6X)­Cys, poly­(6X)­His, and poly­(6X)­Lys), which drive the immobilization of the protein on the tailored material (agarose beads with different functionalities, gold nanorods, and silica nanoparticles). This system also enables the incorporation of azide-based amino acids into the nascent protein for its selective immobilization through copper-free click reactions. Finally, this technology has been expanded to the synthesis and immobilization of enzymes and antibody-binding proteins for the fabrication of functional biomaterials. This synthetic biological platform has emerged as a versatile tool for on-demand fabrication of therapeutic, diagnostic, and sensing biomaterials

    Expanding One-Pot Cell-Free Protein Synthesis and Immobilization for On-Demand Manufacturing of Biomaterials

    No full text
    Fabrication of protein-based biomaterials is an arduous and time-consuming procedure with multiple steps. In this work, we describe a portable toolkit that integrates both cell-free protein synthesis (CFPS) and protein immobilization in one pot just by mixing DNA, solid materials, and a CFPS system. We have constructed a modular set of plasmids that fuse the N-terminus of superfolded green fluorescent protein (sGFP) with different peptide tags (poly­(6X)­Cys, poly­(6X)­His, and poly­(6X)­Lys), which drive the immobilization of the protein on the tailored material (agarose beads with different functionalities, gold nanorods, and silica nanoparticles). This system also enables the incorporation of azide-based amino acids into the nascent protein for its selective immobilization through copper-free click reactions. Finally, this technology has been expanded to the synthesis and immobilization of enzymes and antibody-binding proteins for the fabrication of functional biomaterials. This synthetic biological platform has emerged as a versatile tool for on-demand fabrication of therapeutic, diagnostic, and sensing biomaterials

    Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors

    No full text
    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV–vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine

    Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods

    No full text
    Gold nanorods have numerous applications in biomedical research, including diagnostics, bioimaging, and photothermal therapy. Even though surfactant removal and surface conjugation with antifouling molecules such as polyethylene glycol (PEG) are required to minimize nonspecific protein binding and cell uptake, the reliable characterization of these processes remains challenging. We propose here the use of laser desorption/ionization mass spectrometry (LDI-MS) to study the ligand exchange efficiency of cetyltrimethylammonium bromide (CTAB)-coated nanorods with different PEG grafting densities and to characterize nanorod internalization in cells. Application of LDI-MS analysis shows that residual CTAB consistently remains adsorbed on PEG-capped Au nanorods. Interestingly, such residual CTAB can be exploited as a mass barcode to discern the presence of nanorods in complex fluids and in vitro cellular systems, even at very low concentrations

    High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning

    No full text
    We show that thermal treatment of small Au seeds results in extensive twinning and a subsequent drastic improvement in the yield (>85%) of formation of penta­twinned nanoparticles (NPs), with preselected morphology (nanorods, bipyramids, and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained NPs, which in the case of nanorods avoids the need for additives such as Ag<sup>+</sup> ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final NPs. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. Together, these results represent a paradigm shift in anisotropic gold NP synthesis

    Steric Hindrance Induces crosslike Self-Assembly of Gold Nanodumbbells

    No full text
    In the formation of colloidal molecules, directional interactions are crucial for controlling the spatial distribution of the building blocks. Anisotropic nanoparticles facilitate directional clustering via steric constraints imposed by each specific shape, thereby restricting assembly along certain directions. We show in this Letter that the combination of patchiness (attraction) and shape (steric hindrance) allows assembling gold nanodumbbell building blocks into crosslike dimers with well-controlled interparticle distance and relative orientation. Steric hindrance between interacting dumbbell-like particles opens up a new synthetic approach toward low-symmetry plasmonic clusters, which may significantly contribute to understand complex plasmonic phenomena

    Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    No full text
    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets

    Exploring the Optical Nonlinearities of Plasmon-Exciton Hybrid Resonances in Coupled Colloidal Nanostructures

    No full text
    Strong coupling of plasmons and excitons can form hybrid states, the so-called “plexcitons”. Although plasmons have a low quality factor, the exceptionally high coupling strength with molecular aggregates, in particular J-aggregates, allows the realization of strong interaction. Despite several studies in recent years showing the formation of plexcitonic states, their nature, especially at very short times, is still insufficiently investigated. In this article, we identify the nonlinear optical behavior of plexcitons formed on gold nanorods coated with J-aggregated cyanine molecules at short times by transient absorption spectroscopy and a simple Lorentz oscillator model. We control the spectral overlap of the two resonances and analyze the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states. We demonstrate that at ultrashort time scales plexcitons show tunable plasmonic and excitonic nonlinear performance according to the hybridization model. In a first approach, we discover a way to optically manipulate the quality factor and study the effects on the coupled hybrid states. As a second approach, we find that the coupling strength can also be influenced on an ultrashort time scale in the strong coupling regime when plexcitons are excited

    Integration of Gold Nanoparticles in Optical Resonators

    No full text
    The optical absorption of one-dimensional photonic crystal based resonators containing different types of gold nanoparticles is controllably modified by means of the interplay between planar optical cavity modes and localized surface plasmons. Spin-casting of metal oxide nanoparticle suspensions was used to build multilayered photonic structures that host (silica-coated) gold nanorods and spheres. Strong reinforcement and depletion of the absorptance was observed at designed wavelength ranges, thus proving that our method provides a reliable means to modify the optical absorption originated at plasmonic resonances of particles of arbitrary shape and within a wide range of sizes. These observations are discussed on the basis of calculations of the spatial and spectral dependence of the optical field intensity within the multilayers
    corecore