49 research outputs found

    Efeito do tratamento de superficie e do silano na resistencia a tração da união entre ceramica de infra-estrutura IPS Empress 2 e agentes cimentantes

    Get PDF
    Orientador : Lourenço Correr SobrinhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de PiracicabaResumo: O objetivo deste trabalho foi avaliar a resistência à tração da união entre cerâmica de infra-estrutura IPS Empress 2 (Ivoclar) e materiais de fixação sob diferentes tratamentos na superfície da cerâmica, associado ou não à aplicação do silano. Foram confeccionados duzentos e quarenta discos em cerâmica com 5,5 mm de diâmetro por 2,5 mm de espessura e separados em 12 grupos de 10 pares de discos. Cada grupo foi submetido aos seguintes tratamentos: Grupos 1 e 7 - jateamento com óxido de alumínio 100 µm; Grupos 2 e 8 - jateamento com óxido de alumínio 100 µm e aplicação do silano; Grupos 3 e 9 - jateamento com óxido de alumínio 50 µm; Grupos 4 e 10 - jateamento com óxido de alumínio 50 µm e aplicação do silano; Grupos 5 e 11 - condicionamento com ácido fluorídrico 10%, por 20 segundos; Grupos 6 e 12 - condicionamento com ácido fluorídrico 10%, por 20 segundos e aplicação do silano. Após, os discos em cerâmica dos grupos 1 a 6 foram unidos em pares com adesivo Single Bond e cimento resinoso Rely X, e os discos dos grupos 7 a 12, com cimento de ionômero de vidro modificado por resina ProTec CEM. Em seguida, os corpos-de-prova foram armazenados em água destilada a 37° C durante 24 horas, seguido de 500 ciclos térmicos de 5° C e 55° C, com duração de 1 minuto em cada banho. Após, os corpos-de-prova foram submetidos ao ensaio de tração em máquina Instron (Modelo 4411) com velocidade de 1 mm/minuto. O tipo de falha foi verificado numa lupa estereoscópica com aumento de 20 vezes. As médias dos resultados foram: Grupo 1 - 3,80 MPa; Grupo 2 - 8,35 MPa; Grupo 3 - 5,35 MPa; Grupo 4 - 11,84 MPa; Grupo 5 - 16,94 MPa; Grupo 6 - 25,36 MPa; Grupo 7 - 0,51 MPa; Grupo 8 - 3,61 MPa; Grupo 9 - 0,64 MPa; grupo 10 - 4,06 MPa; grupo 11 - 4,75 MPa; e, Grupo 12 - 11 ,20 MPa. Os resultados foram submetidos à análise de variância e ao teste de Tukey (p a tensile strength test in an Instron Universal Testing Machine at a cross-head speed of 1 mm/minute. The pattern of failure was examined with a ligth microscope at x 20 magnification. The results were the following: group 1 - 3.80 MPa; group 2 - 8.35; group 3 - 5.35 MPA; group 4 - 11.84 MPa; group 5 - 16.94 MPa; group 6 - 25.36 MPa; group 7 - 0.51 MPa; group 8 - 3.61 MPa; group 9 - 0.64 MPa; group 10 - 4.06 MPa; group 11 - 4.75 MPa; and group 12 - 11.20 MPa. The results were submitted to variance analysis and Tukey's test (p<0.05). The fixation with Rely X resin cement achieved higher values of tensile strength in relation to ProTec CEM, independent of the superficial treatment and silane application (p<0.05); the surface treatment with 10% hydrofluoric acid achieved higher values of tensile bond strength (p<0.05) in relation to the sandblasting with 50 µm and 100 µm aluminum oxide, independent of the material for fixation and silane application; the silane application increased the bond strength, independent of the material for fixation and the superficial treatment. In the specimens bonded with ProTec CEM, the pattern of failure was adhesive for sandblasting without silane application, and predominantly cohesive in the cement for acid etching with hydrofluoric acid and silane application. In the samples fixed with Rely X, the failures were mainly mixed.DoutoradoDoutor em Materiais Dentário

    Evaluation of surface topography of ceramics under different surface treatments

    Get PDF
    The  purpose  of  this  study  was  to  evaluate  the  surface  topography  of  Noritake,  IPS  e.max and Cercon ceramics after treatment with either airborne aluminum oxide particle abrasion or   hydrofluoric   acid   etching.   Six   specimens   of   each   ceramic   (10mm   x   10mm   x   0,5mm) were fabricated and randomly divided into three groups: Group 1: without surface treatment (control);;   Group   2:   airborne   particle   abrasion   with   50-­μm   aluminum   oxide;;   Group   3:   10%   hydrofluoric   acid   etching.   The   specimens   were   gold   coated   and   examined   using   scanning   electron  microscopy.  The  10%  hydrofluoric  acid  increased  the  surface  irregularities  of  Noritake and IPS e.max ceramics, but did not change the surface topography of Cercon ceramic. Airborne particle   abrasion   with   aluminum   oxide   increased   the   surface   irregularities   of   Noritake,   IPS   e.max   and   Cercon   ceramics.   It   was   concluded   that   hydrofluoric   acid   was   effective   only   for   Noritake  and  IPS  e.max  ceramics,  and  airborne  particle  abrasion  was  effective  for  the  three ceramics.

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus Kjøller, Tamir Klein, Michael Kleyer, Jitka Klimešová, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf Kühn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan Llusià, Madelon Lohbeck, Álvaro López-García, Gabriela Lopez-Gonzalez, Zdeňka Lososová, Frédérique Louault, Balázs A. Lukács, Petr Lukeš, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki Mäkelä, Harri Mäkinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina Martínez-Garza, Jordi Martínez-Vilalta, Tereza Mašková, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, Céline Meredieu, Julie Messier, Ilona Mészáros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila Molnár V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka Moravcová, Alvaro Moreno-Martínez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina Müller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis Pärtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, Valério D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr Pyšek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime Réjou-Méchain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja Rüger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-García, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun Siebenkäs, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, Grégory Sonnier, Mia Vedel Sørensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana Svitková, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, Rubén Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, Lubomír Tichý, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, Péter Török, Tonantzin Tarin, José M. Torres-Ruiz, Béla Tóthmérész, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim André Vanselow, Angelica Vårhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime Villacís, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, Kátia Janaina Zanini, Amy E. Zanne, David Zelený, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia Ziemińska, Chad R. Zirbel, Georg Zizka, Irié Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et Société'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Síntese de 3-organocalcogeno-benzo[b]furanos via reações de ciclização de 2-alquinil-fenóis mediadas por cobre

    No full text
    This work describes the development of new approach for the synthesis of 3- organochalcogen-benzo[b]furans via CuI- promoted intramolecular cyclization of 2-alquinyl-phenols. Firstly, the 2-phenylethynyl-phenol was prepared by palladium catalyzed Sonogashira cross coupling reaction of 2-iodo-phenol and phenylacetylene. The 2-phenylethynyl-phenol was then used as standard substrate for the optimization studies, in order to determine an optimal cyclization condition to obtain the 2-phenyl-3-phenylselenyl-benzo[b]furan. Reaction parameters such as temperature, solvent, base, atmosphere and stoichiometry were tested and the results showed that best yield for the expected 2-phenyl-3- phenylselenyl-benzo[b]furan was obtained by using the 2-phenylethynyl-phenol (0.25 mmol), CuI (1.5 equiv), (PhSe) 2 (1.1 equiv), DMSO (3 mL) as solvent under ambient atmosphere and temperature (air; 25 °C). Using this cyclization method, the desired benzo[b]furan derivative could be isolated in 72% yield, under mild reaction conditions.Este trabalho descreve o desenvolvimento de uma nova abordagem para a síntese de 3- organocalco-benzo [b] furanos através de CuI - ciclização intramolecular promovida de 2-alquinil-fenóis. Em primeiro lugar, o 2-feniletinil-fenol foi preparado por Reação de acoplamento cruzado de Sonogashira catalisada com paládio de 2-iodo-fenol e fenilacetileno. O 2-feniletinil-fenol foi então utilizado como substrato padrão para os estudos de otimização, a fim de determinar uma ciclização ótima condição para obter o 2-fenil-3-fenilsilenil-benzo [b] furano. Reação parâmetros como temperatura, solvente, base, atmosfera e estequiometria foram testado e os resultados mostraram que o melhor rendimento para o esperado 2-fenil-3- fenilselenil-benzo [b] furano foi obtido utilizando o 2-feniletinilfenol (0,25 mmol), CuI (1,5 equiv), (PhSe) 2 (1,1 equiv), DMSO (3 mL) como solvente sob atmosfera ambiente e temperatura (ar, 25 ° C). Usando esta ciclização método, o derivado benzo [b] furano desejado poderia ser isolado com 72% de rendimento, sob condições de reação suave
    corecore