16 research outputs found

    Abstinence-Induced Nicotine Seeking Relays on a Persistent Hypoglutamatergic State within the Amygdalo-Striatal Neurocircuitry

    Get PDF
    Nicotine robustly sustains smoking behavior by acting as a primary reinforcer and by enhancing the incentive salience of the nicotine-associated stimuli. The motivational effects produced by environmental cues associated with nicotine delivery can progressively manifest during abstinence resulting in reinstatement of nicotine seeking. However, how the activity in reward neuronal circuits is transformed during abstinence-induced nicotine seeking is not yet fully understood. In here we used a contingent nicotine and saline control self-administration model to disentangle the contribution of cue-elicited seeking responding for nicotine after drug abstinence in male Wistar rats. Using ex vivo electrophysiological recordings and a network analysis approach, we defined temporal and brain-region specific amygdalo-striatal glutamatergic alterations that occur during nicotine abstinence. The results from this study provide critical evidence indicating a persistent hypoglutamatergic state within the amygdalo-striatal neurocircuitry over protracted nicotine abstinence. During abstinence-induced nicotine seeking, electrophysiological recordings showed progressive neuroadaptations in dorsal and ventral striatum already at 14-d abstinence while neuroadaptations in subregions of the amygdala emerged only after 28-d abstinence. The observed neuroadaptations pointed to a brain network involving the amygdala and the dorsolateral striatum (DLS) to be implied in cue-induced reinstatement of nicotine seeking. Together these data suggest long-lasting neuroadaptations that might reflect neuroplastic changes responsible to abstinence-induced nicotine craving. Neurophysiological transformations were detected within a time window that allows therapeutic intervention advancing clinical development of preventive strategies in nicotine addiction. </p

    Nicotine but not saline self-administering or yoked control conditions produces sustained neuroadaptations in the accumbens shell

    Get PDF
    IntroductionUsing yoked animals as the control when monitoring operant drug-self-administration is considered the golden standard. However, instrumental learning per se recruits several neurocircuits that may produce distinct or overlapping neuroadaptations with drugs of abuse. The aim of this project was to assess if contingent responding for nicotine or saline in the presence of a light stimulus as a conditioned reinforcer is associated with sustained neurophysiological adaptations in the nucleus accumbens shell (nAcS), a brain region repeatedly associated with reward related behaviors.MethodsTo this end, nicotine-or saline-administrating rats and yoked-saline stimulus-unpaired training conditions were assessed in operant boxes over four consecutive weeks. After four additional weeks of home cage forced abstinence and subsequent cue reinforced responding under extinction conditions, ex vivo electrophysiology was performed in the nAcS medium spiny neurons (MSNs).ResultsWhole cell recordings conducted in voltage and current-clamp mode showed that excitatory synapses in the nAcS were altered after prolonged forced abstinence from nicotine self-administration. We observed an increase in sEPSC amplitude in animals with a history of contingent nicotine SA potentially indicating higher excitability of accumbal MSNs, which was further supported by current clamp recordings. Interestingly no sustained neuroadaptations were elicited in saline exposed rats from nicotine associated visual cues compared to the yoked controls.ConclusionThe data presented here indicate that nicotine self-administration produces sustained neuroadaptations in the nAcS while operant responding driven by nicotine visual stimuli has no long-term effects on MSNs in nAcS

    Sub-dimensions of Alcohol Use Disorder in Alcohol Preferring and Non-preferring Rats, a Comparative Study

    Get PDF
    Recent animal models of alcohol use disorder (AUD) are centered in capturing individual vulnerability differences in disease progression. Here, we used genetically selected Marchigian Sardinian alcohol-preferring (msP) and Wistars rats to apply a multidimensional model of AUD adapted from a previously described DSM-IV/DSM-5 multisymptomatic cocaine addiction model. As proof of concept, we hypothesized that msP rats, genetically selected for excessive drinking, would be more prone to develop dependence-like behavior compared to Wistars. Before exposure of animals to alcohol, we monitored basal anxiety in the elevated plus maze (EPM). Animals were then trained in prolonged operant alcohol self-administration, consisting of 30-min daily sessions for 60 days in total. Each session consisted of two 10-min periods of alcohol reinforcement separated by 10-min interval of non-reinforcement. Following training, we applied three criteria of individual vulnerability for AUD: (1) persistence of lever pressing for alcohol when it was not available; (2) motivation for alcohol in a progressive ratio (PR) schedule of reinforcement; and (3) resistance to punishment when alcohol delivery was anticipated by a foot-shock (0.3 mA). We obtained four groups corresponding to the number of criteria met (0–3 crit). Rats in the 0crit and 1crit groups were characterized as resilient, whereas rats in the 2crit and 3crit groups were characterized as prone to develop a dependent-like phenotype. As predicted, the 2–3crit groups were enriched with msP rats while the 0–1crit groups were enriched in Wistar rats. In further analysis, we calculated the global addiction score (GAS) per subject by the sum of the normalized score (z-score) of each criterion. Results showed GAS was highly correlated with animal distribution within the 3 criteria. Specifically, GAS was negative in the 0–1crit groups, and positive in the 2–3crit groups. A positive correlation between basal anxiety and quantity of alcohol intake was detected in msP rats but not Wistars. In conclusion, we demonstrated that the 0/3criteria model is a suitable approach to study individual differences in AUD and that msP rats, selected for excessive-alcohol drinking, show a higher propensity to develop AUD compared to non-preferring Wistars

    Selective inhibition of phosphodiesterase 7 enzymes reduces motivation for nicotine use through modulation of mesolimbic dopaminergic transmission

    Get PDF
    Approximately 5 million people die from diseases related to nicotine addiction and tobacco use each year. The nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. We examined the notion of reequilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein and cAMP response element-binding protein and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A–dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area, the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of c-aminobutyric acid transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Thus, PDE7 inhibitors have the potential to treat nicotine abuse

    Neurobiology of alcohol seeking behavior

    No full text
    Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than &amp;gt;50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.Funding Agencies|Swedish Research Council, VR projectSwedish Research Council [2018-02320]</p

    Preclinical Models of Relapse to Psychostimulants Induced by Environmental Stimuli

    No full text
    A major aim of addiction research is the understanding of the pathophysiological profile of relapse risk and the development of treatments for relapse prevention. Exposure to drug-paired environmental stimuli elicits craving and increases the likelihood to relapse. Therefore, scholars in the addiction field have developed several preclinical models of cued relapse in order to study the biological and pharmacological background of this phenomenon. Here we provide an overview of the nowadays available models of cued relapse to psychostimulant seeking. We begin describing the models of relapse induced by drug-contingent and discriminative stimuli, and then we give an overview of the models of context-induced relapse. Finally, we illustrate the models of incubation of cue-induced psychostimulant craving. For each relapse model we provide technical details, a step by step protocol, and troubleshooting tips. The researcher interested in studying the contribution of environmental stimuli to relapse will find here the tools to choose the optimal method to answer their question, and technical details necessary to the methodological implementation of their research

    Downregulation of Synaptotagmin 1 in the Prelimbic Cortex Drives Alcohol-Associated Behaviors in Rats

    No full text
    BACKGROUND: Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS: We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS: Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS: Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.Funding Agencies|Swedish Research CouncilSwedish Research CouncilEuropean Commission [201307434, 2018-028149]; Region Ostergotland; Stiftelsen Psykiatriska Forskningsfonden; Wallenberg FoundationEuropean Commission</p

    Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABAB receptor-mediated mechanism

    No full text
    The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self -administration and relapse to drug -seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch -clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons

    Activation of PPARγ Attenuates the Expression of Physical and Affective Nicotine Withdrawal Symptoms through Mechanisms Involving Amygdala and Hippocampus Neurotransmission

    Get PDF
    An isoform of peroxisome proliferator-activated receptors (PPARs), PPARγ, is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. Neuroanatomical data indicate PPARγ localization in brain areas involved in drug addiction. Preclinical and clinical data have shown that pioglitazone reduces alcohol and opioid self-administration, relapse to drug seeking, and plays a role in emotional responses. Here, we investigated the behavioral effect of PPARγ manipulation on nicotine withdrawal in male Wistar rats and in male mice with neuron-specific PPARγ deletion (PPARγ(-/-)) and their littermate wild-type (PPARγ(+/+)) controls. Real-time quantitative RT-PCR and RNAscope in situ hybridization assays were used for assessing the levels of expression and cell-type localization of PPARγ during nicotine withdrawal. Brain site-specific microinjections of the PPARγ agonist pioglitazone were performed to explore the role of this system on nicotine withdrawal at a neurocircuitry level. Results showed that activation of PPARγ by pioglitazone abolished the expression of somatic and affective nicotine withdrawal signs in rats and in (PPARγ(+/+)) mice. This effect was blocked by the PPARγ antagonist GW9662. During early withdrawal and protracted abstinence, the expression of PPARγ increased in GABAergic and glutamatergic cells of the amygdala and hippocampus, respectively. Hippocampal microinjections of pioglitazone reduced the expression of the physical signs of withdrawal, whereas excessive anxiety associated with protracted abstinence was prevented by pioglitazone microinjection into the amygdala. Our results demonstrate the implication of the neuronal PPARγ in nicotine withdrawal and indicates that activation of PPARγ may offer an interesting strategy for smoking cessation.SIGNIFICANCE STATEMENT Smoking cessation leads the occurrence of physical and affective withdrawal symptoms representing a major burden to quit tobacco use. Here, we show that activation of PPARγ prevents the expression of both somatic and affective signs of nicotine withdrawal. At molecular levels results show that PPARγ expression increases in GABAergic cells in the hippocampus and in GABA- and glutamate-positive cells in the basolateral amygdala. Hippocampal microinjections of pioglitazone reduce the insurgence of the physical withdrawal signs, whereas anxiety linked to protracted abstinence is attenuated by pioglitazone injected into the amygdala. Our results demonstrate the implication of neuronal PPARγ in nicotine withdrawal and suggest that PPARγ agonism may represent a promising treatment to aid smoking cessation

    An epigenetic mechanism for over-consolidation of fear memories

    Get PDF
    Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.Funding Agencies|Swedish Research Council [2013-07434]; Region ostergotland; Stiftelsen Psykiatriska Forskningsfonden; Wallenberg Foundation; Knut och Alice Wallenberg Stiftelse Grant; Knut and Alice Wallenberg Foundation</p
    corecore