19 research outputs found
Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors.
Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals,
is endogenously expressed in several organs critical for life support such as kidney,
lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin-
positive adult neural progenitor cells and in neurons of the neurogenic hippocampal
dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory
functions and severely damaged in people with Alzheimer’s Disease (AD). The in vivo role
of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored.
Using mice with disrupted Pdpn gene as a model organism and applying combined
behavioral, molecular biological and electrophysiological assays, we here show that the
absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic
DG without affecting the CA3-Schaffer’s collateral-CA1 synapses. Pdpn deletion also
enhanced the proliferative capacity of DG neural progenitor cells and diminished
survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin
gene disruption showed increased anxiety-like behaviors in experimentally validated
behavioral tests as compared to wild type littermate controls. Together, these findings
broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic
plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for
future studies addressing general anxiety disorder and synaptic depression-related
memory dysfunctions
miRNA-132/212 Deficiency Disrupts Selective Corticosterone Modulation of Dorsal vs. Ventral Hippocampal Metaplasticity
Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer’s Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212−/−) mice, we examined the effects of corticosterone (the rodent’s equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR–132/212−/− hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR–132/212−/− hippocampi. Sirt1 levels were also endogenously enhanced in the miR–132/212−/− hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR–132/212−/− hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212−/− mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
Department of Medical Physiology and Biophysics, University of Seville, 41013 Seville, Spain
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
Department for Pharmaceutical Sciences, Josef-Holaubek-Platz 2, 2D 303, 1090 Vienna, Austria
Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
Partial funding for open access charge: Universidad de Málaga / CBU
Advances in Analgosedation and Periprocedural Care for Gastrointestinal Endoscopy
The number and complexity of endoscopic gastrointestinal diagnostic and therapeutic procedures is globally increasing. Procedural analgosedation during gastrointestinal endoscopic procedures has become the gold standard of gastrointestinal endoscopies. Patient satisfaction and safety are important for the quality of the technique. Currently there are no uniform sedation guidelines and protocols for specific gastrointestinal endoscopic procedures, and there are several challenges surrounding the choice of an appropriate analgosedation technique. These include categories of patients, choice of drug, appropriate monitoring, and medical staff providing the service. The ideal analgosedation technique should enable the satisfaction of the patient, their maximum safety and, at the same time, cost-effectiveness. Although propofol is the gold standard and the most used general anesthetic for endoscopies, its use is not without risks such as pain at the injection site, respiratory depression, and hypotension. New studies are looking for alternatives to propofol, and drugs like remimazolam and ciprofol are in the focus of researchers’ interest. New monitoring techniques are also associated with them. The optimal technique of analgosedation should provide good analgesia and sedation, fast recovery, comfort for the endoscopist, patients’ safety, and will have financial benefits. The future will show whether these new drugs have succeeded in these goals
Advances in Analgosedation and Periprocedural Care for Gastrointestinal Endoscopy
The number and complexity of endoscopic gastrointestinal diagnostic and therapeutic procedures is globally increasing. Procedural analgosedation during gastrointestinal endoscopic procedures has become the gold standard of gastrointestinal endoscopies. Patient satisfaction and safety are important for the quality of the technique. Currently there are no uniform sedation guidelines and protocols for specific gastrointestinal endoscopic procedures, and there are several challenges surrounding the choice of an appropriate analgosedation technique. These include categories of patients, choice of drug, appropriate monitoring, and medical staff providing the service. The ideal analgosedation technique should enable the satisfaction of the patient, their maximum safety and, at the same time, cost-effectiveness. Although propofol is the gold standard and the most used general anesthetic for endoscopies, its use is not without risks such as pain at the injection site, respiratory depression, and hypotension. New studies are looking for alternatives to propofol, and drugs like remimazolam and ciprofol are in the focus of researchers’ interest. New monitoring techniques are also associated with them. The optimal technique of analgosedation should provide good analgesia and sedation, fast recovery, comfort for the endoscopist, patients’ safety, and will have financial benefits. The future will show whether these new drugs have succeeded in these goals
Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors
Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals, is endogenously expressed in several organs critical for life support such as kidney, lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin-positive adult neural progenitor cells and in neurons of the neurogenic hippocampal dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory functions and severely damaged in people with Alzheimer’s Disease (AD). The in vivo role of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored. Using mice with disrupted Pdpn gene as a model organism and applying combined behavioral, molecular biological and electrophysiological assays, we here show that the absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic DG without affecting the CA3-Schaffer’s collateral-CA1 synapses. Pdpn deletion also enhanced the proliferative capacity of DG neural progenitor cells and diminished survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin gene disruption showed increased anxiety-like behaviors in experimentally validated behavioral tests as compared to wild type littermate controls. Together, these findings broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for future studies addressing general anxiety disorder and synaptic depression-related memory dysfunctions.C, PU and FM were supported by the Austrian Science Fund [FWF: Project Number P_27551]
Immune and neural response to acute social stress in adolescent humans and rodents
Abstract Studies in adults have linked stress-related activation of the immune system to the manifestation of psychiatric conditions. Using a translational design, this study aimed to examine the impact of social stress on immune activity in adolescents and on neuronal activity in a preclinical mouse model. Participants were 31 adolescents (ages 12–19), including 25 with mood and anxiety symptoms. Whole-blood samples were collected before and after the Trier Social Stress Test (TSST), a stress-inducing public speaking task, then cultured for 6 hours in the presence and absence of the inflammatory endotoxin lipopolysaccharide (LPS). Effects of TSST and LPS on 41 immune biomarkers were examined using repeated-measures analysis of variance. Separately, juvenile (8-week-old) male mice were non-stressed or exposed to reminder social defeat then intraperitoneally injected with saline or LPS (n = 6/group). Brains were perfused and collected for immunohistochemistry and confocal microscopy at 0, 1, 6, and 24 hours post-injection. The activity was determined by the density of cFos-positive neurons in the paraventricular hypothalamus, paraventricular thalamus, and basolateral amygdala, regions known to show sustained activation to immunological challenge. Analyses in the adolescent study indicated a strong effect of LPS but no effects of TSST or TSST×LPS interaction on immune biomarkers. Similarly, reminder social defeat did not induce sustained neuronal activity changes comparable to LPS immunological challenge in juvenile mice. Our convergent findings across species suggest that the acute immune response to stress documented in adults is not present in youth. Thus, aging and chronicity effects may play an important role in the inflammatory response to acute psychosocial stress
Formation of memory assemblies through the DNA-sensing TLR9 pathway
Abstract
As hippocampal neurons respond to diverse types of information
1
, a subset assembles into microcircuits representing a memory
2
. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage
3–5
. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes
6
. Neuron-specific knockdown of
Tlr9
impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits
Enhanced synaptic plasticity and spatial memory in female but not male FLRT2-haplodeficient mice
Abstract The Fibronectin Leucine-Rich Transmembrane protein 2 (FLRT2) has been implicated in several hormone -and sex-dependent physiological and pathological processes (including chondrogenesis, menarche and breast cancer); is known to regulate developmental synapses formation, and is expressed in the hippocampus, a brain structure central for learning and memory. However, the role of FLRT2 in the adult hippocampus and its relevance in sex-dependent brain functions remains unknown. We here used adult single-allele FLRT2 knockout (FLRT2+/−) mice and behavioral, electrophysiological, and molecular/biological assays to examine the effects of FLRT2 haplodeficiency on synaptic plasticity and hippocampus-dependent learning and memory. Female and male FLRT2+/− mice presented morphological features (including body masses, brain shapes/weights, and brain macroscopic cytoarchitectonic organization), indistinguishable from their wild type counterparts. However, in vivo examinations unveiled enhanced hippocampus-dependent spatial memory recall in female FLRT2+/− animals, concomitant with augmented hippocampal synaptic plasticity and decreased levels of the glutamate transporter EAAT2 and beta estrogen receptors. In contrast, male FLRT2+/− animals exhibited deficient memory recall and decreased alpha estrogen receptor levels. These observations propose that FLRT2 can regulate memory functions in the adulthood in a sex-specific manner and might thus contribute to further research on the mechanisms linking sexual dimorphism and cognition