55,420 research outputs found

    Sea flavor content of octet baryons and intrinsic five-quark Fock states

    Full text link
    Sea quark contents of the octet baryons are investigated by employing an extended chiral constituent quark approach, which embodies higher Fock five-quark components in the baryons wave-functions. The well-known flavor asymmetry of the nucleon sea dˉuˉ\bar{d}-\bar{u}, is used as input to predict the probabilities of uˉ\bar{u}, dˉ\bar{d} and sˉ\bar{s} in the nucleon, Λ\Lambda, Σ\Sigma and Ξ\Xi baryons, due to the intrinsic five-quark components in the baryons wave functions.Comment: 22 page

    Strangeness spin, magnetic moment and strangeness configurations of the proton

    Full text link
    The implications of the empirical signatures for the positivity of the strangeness magnetic moment μs\mu_s, and the negativity of the strangeness contribution to the proton spin Δs\Delta_s, on the possible uudssˉuuds\bar s configurations of five quarks in the proton are analyzed. The empirical signs for the values of these two observables can only be obtained in configurations where the uudsuuds system is orbitally excited and the sˉ\bar s quark is in the ground state. The configurations, in which the sˉ\bar s is orbitally excited, which include the conventional K+Λ0K^+\Lambda^0 congfiguration, with the exception of that, in which the uudsuuds component has spin 2, yield negative values for μs\mu_s. Here the strangeness spin Δs\Delta_s, the strangeness magnetic moment μs\mu_s and the axial coupling constant GAsG_A^s are calculated for all possible configurations of the uudssˉuuds\bar s component of the proton. In the configuration with [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S flavor-spin symmetry, which is likely to have the lowest energy, μs\mu_s is positive and ΔsGAs1/3μs\Delta_s\simeq G_A^s\simeq -1/3\mu_s.Comment: 17 page

    Electronic structure and Magnetism in BaMn2_2As2_2 and BaMn2_2Sb2_2

    Full text link
    We study the properties of ThCr2_2Si2_2 structure BaMn2_2As2_2 and BaMn2_2Sb2_2 using density functional calculations of the electronic and magnetic as well experimental measurements on single crystal samples of BaMn2_2As2_2. These materials are local moment magnets with moderate band gap antiferromagnetic semiconducting ground states. The electronic structures show substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin configuration for the nominally d5d^5 Mn. The results are discussed in the context of possible thermoelectric applications and the relationship with the corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)2_2As2_2

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Entanglement enhancement and postselection for two atoms interacting with thermal light

    Get PDF
    The evolution of entanglement for two identical two-level atoms coupled to a resonant thermal field is studied for two different families of input states. Entanglement enhancement is predicted for a well defined region of the parameter space of one of these families. The most intriguing result is the possibility of probabilistic production of maximally entangled atomic states even if the input atomic state is factorized and the corresponding output state is separable.Comment: accepted for publication in J. Phys.

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated
    corecore