5,618 research outputs found

    On the group theoretic structure of a class of quantum dialogue protocols

    Full text link
    Intrinsic symmetry of the existing protocols of quantum dialogue are explored. It is shown that if we have a set of mutually orthogonal nn-qubit states {\normalsize {∣ϕ0>,∣ϕ1>,....,∣ϕi}\{|\phi_{0}>,|\phi_{1}>,....,|\phi_{i}\} and a set of m−qubitm-qubit (m≤nm\leq n) unitary operators {U0,U2,...,U2n−1}:Ui∣ϕ0>=∣ϕi>\{U_{0},U_{2},...,U_{2^{n}-1}\}:U_{i}|\phi_{0}>=|\phi_{i}> and {U0,U2,...,U2n−1}\{U_{0},U_{2},...,U_{2^{n}-1}\} forms a group under multiplication then it would be sufficient to construct a quantum dialogue protocol using this set of quantum states and this group of unitary operators}. The sufficiency condition is used to provide a generalized protocol of quantum dialogue. Further the basic concepts of group theory and quantum mechanics are used here to systematically generate several examples of possible groups of unitary operators that may be used for implementation of quantum dialogue. A large number of examples of quantum states that may be used to implement the generalized quantum dialogue protocol using these groups of unitary operators are also obtained. For example, it is shown that GHZ state, GHZ-like state, W state, 4 and 5 qubit Cluster states, Omega state, Brown state, Q4Q_{4} state and Q5Q_{5} state can be used for implementation of quantum dialogue protocol. The security and efficiency of the proposed protocol is appropriately analyzed. It is also shown that if a group of unitary operators and a set of mutually orthogonal states are found to be suitable for quantum dialogue then they can be used to provide solutions of socialist millionaire problem.Comment: 15 page

    RNase L-Independent Specific 28S rRNA Cleavage in Murine Coronavirus-Infected Cells

    Get PDF
    We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously

    RNase L-Independent Specific 28S rRNA Cleavage in Murine Coronavirus-Infected Cells

    Get PDF
    We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously

    Lung Nodule Classification using A Novel Two-stage Convolutional Neural Networks Structure'

    Full text link
    © 2019 IEEE. Lung cancer is one of the most fatal cancers in the world. If the lung cancer can be diagnosed at an early stage, the survival rate of patients post treatment increases dramatically. Computed Tomography (CT) diagram is an effective tool to detect lung cancer. In this paper, we proposed a novel two-stage convolution neural network (2S-CNN) to classify the lung CT images. The structure is composed of two CNNs. The first CNN is a basic CNN, whose function is to refine the input CT images to extract the ambiguous CT images. The output of first CNN is fed into another inception CNN, a simplified version of GoogLeNet, to enhance the better recognition on complex CT images. The experimental results show that our 2S-CNN structure has achieved an accuracy of 89.6%

    Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy

    Get PDF
    To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment

    Cobalt-sulfur coordination chemistry drives B\u3csub\u3e12\u3c/sub\u3e loading onto methionine synthase

    Get PDF
    Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in Nature. Cobalamin (or vitamin B12) is an essential cobalt-containing organometallic cofactor in mammals, and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination, for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the -axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria

    Structural and Mechanistic Insights into Hemoglobincatalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Get PDF
    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal

    Structural and Mechanistic Insights into Hemoglobincatalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Get PDF
    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal

    Structural and Mechanistic Insights into Hemoglobincatalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Get PDF
    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal

    Modelling Canopy Flows over Complex Terrain

    Get PDF
    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO22 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required
    • …
    corecore