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Hydrogen sulfide is a cardioprotective signaling molecule but
is toxic at elevated concentrations. Red blood cells can synthe-
size H2S but, lacking organelles, cannot dispose of H2S via the
mitochondrial sulfide oxidation pathway. We have recently
shown that at high sulfide concentrations, ferric hemoglobin
oxidizes H2S to a mixture of thiosulfate and iron-bound polysul-
fides in which the latter species predominates. Here, we report
the crystal structure of human hemoglobin containing low spin
ferric sulfide, the first intermediate in heme-catalyzed sulfide
oxidation. The structure provides molecular insights into why
sulfide is susceptible to oxidation in human hemoglobin but is
stabilized against it in HbI, a specialized sulfide-carrying hemo-
globin from a mollusk adapted to life in a sulfide-rich environ-
ment. We have also captured a second sulfide bound at a postu-
lated ligand entry/exit site in the �-subunit of hemoglobin,
which, to the best of our knowledge, represents the first direct
evidence for this site being used to access the heme iron. Hydro-
disulfide, a postulated intermediate at the junction between
thiosulfate and polysulfide formation, coordinates ferric hemo-
globin and, in the presence of air, generated thiosulfate. At low
sulfide/heme iron ratios, the product distribution between thio-
sulfate and iron-bound polysulfides was approximately equal.
The iron-bound polysulfides were unstable at physiological glu-
tathione concentrations and were reduced with concomitant
formation of glutathione persulfide, glutathione disulfide, and
H2S. Hence, although polysulfides are unlikely to be stable in the
reducing intracellular milieu, glutathione persulfide could serve
as a persulfide donor for protein persulfidation, a posttransla-
tional modification by which H2S is postulated to signal.

Hydrogen sulfide (H2S)2-dependent signaling occurs via per-
sulfidation (Fig. 1A), a posttranslational modification of protein

cysteine residues that leads to cysteine persulfide (Cys-SSH)
formation (1). Persulfidation could occur via the reaction
between H2S and an oxidized cysteine (e.g. cysteine sulfenic
acid) (Fig. 1B). Alternatively, this modification could be cata-
lyzed by thiol sulfurtransferases that stabilize Cys-SSH in active
sites and transfer the persulfide group to a cysteine thiolate on a
target protein (Fig. 1C) (2). Sulfur sources other than H2S that
could potentially lead to protein persulfidation include (i) low
molecular weight persulfides like Cys-SSH or glutathione per-
sulfide (GSSH), (ii) sulfurtransferase substrates such as thiosul-
fate or mercaptopyruvate, and (iii) hydropolysulfides (hereafter
referred to as polysulfides).

Cystathionine �-synthase and �-cystathionase can synthe-
size Cys-SSH (3, 4) in addition to H2S (5, 6). GSSH and thiosul-
fate are products of the sulfide oxidation pathway housed in the
mitochondrion, which converts H2S ultimately to sulfate (7, 8)
via reactive sulfur species (2). In bacteria, sulfide quinone oxi-
doreductase, the first enzyme in the sulfide oxidation pathway,
generates polysulfides, which can serve as a periplasmic sulfur
storage form (9, 10). The product of the mammalian sulfide
quinone oxidoreductase is GSSH rather than polysulfides (7, 8).
Hence, a biological source of polysulfides in mammals was not
known until recently, when we demonstrated that hemepro-
teins such as hemoglobin and myoglobin can support the cata-
lytic oxidation of H2S to thiosulfate and polysulfides (Fig. 1D)
(11, 12). The ability of human hemoglobin to oxidize sulfide
stands in intriguing contrast to other hemoglobins that func-
tion as sulfide carriers. Thus, organisms adapted to life in sul-
fide-rich environments use specialized hemoglobins (e.g. HbI in
Lucina pectinata) to bind sulfide and deliver it to endosymbi-
onts that utilize sulfide as an energy source (13).

Other systems have been reported to generate polysulfides as
side products. For example, in the absence of a sulfur acceptor,
mercaptopyruvate sulfur transferase generates polysulfides by
catalyzing repeated sulfur transfers from the substrate, 3-mer-
captopyruvate, to an active site cysteine (at pH 9.1). The bound
polysulfide can eventually be released from the enzyme (14).
Polysulfides can also be formed in solution (e.g. by the rapid
reaction of hypochlorous acid, an oxidant produced by neutro-
phils, with sulfide to generate HSCl). The latter can be subse-
quently oxidized to a mixture of polysulfides, with HS4S� and
HS3S� predicted to be the dominant species at physiological
pH (15). In principle, polysulfide synthesis could occur via this
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route if H2S, which is typically present at very low concentra-
tions, is transiently increased at sites of inflammation. Finally,
H2S can reduce cytochrome c, the electron carrier between
complexes III and IV. However, elemental sulfur, the expected
product of this reaction, has not been characterized (16).

Polysulfides are considerably more reactive than H2S and, as
expected, elicit cellular effects at lower concentrations. Hence,
it is not surprising that polysulfides are increasingly invoked as
substrates for protein persulfidation (17, 18). Depending on
which sulfur atom in the catenated sulfur chain is attacked by
the protein thiol, a string of posttranslational modifications
would be generated (Fig. 1E). The drawback in using polysul-
fides is that nucleophilic attack at the terminal sulfur in a cate-
nated sulfur chain must be precisely controlled. Strategies for
how this control is achieved are not known and have not been
addressed in studies invoking its relevance.

Oxidation of sulfide by ferric myoglobin and hemoglobin to
generate iron-bound polysulfides and thiosulfate represent
chemically challenging multistep reactions in which the reac-
tion intermediates are poorly characterized (11, 12). The intra-
cellular milieu is reducing, and it begs the question as to
whether the polysulfides formed by hemoglobin evade reaction
with low molecular weight thiols or succumb to reduction.
Because red blood cells express mercaptopyruvate sulfurtrans-
ferase and synthesize H2S but lack mitochondria, understand-
ing the mechanism of sulfide oxidation via the action of
FeIII-Hb assumes even greater importance in this versus in
other cell types.

In this study, we have captured the initially formed HS�-
FeIII-Hb intermediate by X-ray crystallography in addition to a
second sulfide at the entrance of a postulated ligand access
channel in the �-subunit of hemoglobin. We have demon-
strated that the postulated hydrodisulfide intermediate coordi-
nates to ferric heme iron and is a substrate for further oxidation.

We have found that the iron-bound polysulfides are susceptible
to physiologically relevant reductants, revealing that they are
unlikely to survive in the reducing conditions found in the cyto-
plasm. On the other hand, the predominant persulfide product
of the reaction between polysulfides and reductants (i.e. GSSH)
might play a role in signaling.

Results

Structure of Human Hemoglobin with Bound Sulfide—The
crystal structure of human FeIII-Hb incubated with H2S was
determined at 1.79 Å resolution (Fig. 2, Table 1). The globin
fold structure of the HS�-FeIII-Hb complex is similar to the
R-state structure of hemoglobin (19) with C� root mean square
deviations of �0.2 Å. To verify that the extra density observed
at the distal side of the iron is a sulfur atom (Fig. 2A), sulfur
anomalous dispersion signals were collected at a 1.77-Å wave-
length, and diffraction was recorded to 2.8 Å resolution. Fol-
lowing molecular replacement, the sulfur anomalous difference
map was calculated to locate sulfur atoms in hemoglobin. As
shown in Fig. 2B, the sulfur anomalous signal overlaps with the
electron density near the iron atom, confirming the presence of
a sulfur ligand on the distal side of heme.

The distance between the proximal HisF8 (His-87 in the
�-subunit and His-92 in the �-subunit) NE2 and the iron atoms
is 2.3 Å in both the �- and �-subunits (Fig. 2, C and D). The
bond length between the iron and the sulfur atoms with unre-

FIGURE 1. Schematic showing H2S-derived reactive sulfur species and
persulfidation mechanisms. A, protein persulfidation is a posttranslational
modification at a cysteine residue. B, persulfidation could occur via the reac-
tion of H2S and an oxidized cysteine (e.g. cysteine sulfenic acid). C, oxidation
of H2S via the mitochondrial sulfide oxidation pathway generates reactive
sulfur species, such as GSSH and thiosulfate (S2O3

2�), which are substrates for
thiol sulfurtransferases (TST) that stabilize active site persulfides and can
transfer the outer sulfur to cysteines on target proteins. D, ferric heme-depen-
dent oxidation of H2S by hemoglobin (or myoglobin) leads to thiosulfate and
iron-bound polysulfide formation. E, the uncatalyzed reaction of cysteine thi-
ols on target proteins with polysulfide could lead to the nonspecific transfer
of one or more sulfur atoms, depending on which sulfur atom in the cate-
nated chain is attacked.

FIGURE 2. Crystal structure of the human ferric hemoglobin sulfide com-
plex. A, the 2Fo � Fc electron density map (2� contour level) near the heme
group of the HS�-FeIII-Hb complex in the �-subunit. The density for the
�-subunit was similar (not shown). B, the sulfur anomalous difference map
(4� contour level) of the HS�-FeIII-Hb complex identified two sulfur atoms at
the distal side of the heme group and at a potential entry/exit point located
near a path lined by Phe-43 and Phe-46 (PHE path, orange dashed arrow). The
second sulfur atom at the surface was only seen in the �-subunit. The CE loop
is marked as a red dashed circle. The additional observed electron densities
belong to the sulfur atoms of methionine and cysteine residues. C and D,
close-up showing the heme group and key residues in the �-subunit (C) and
the �-subunit (D) of FeIII-Hb treated with sulfide. The �- and �-subunits of
hemoglobin are colored dark blue and cyan, respectively. The sulfur ligand is
shown as a yellow sphere.
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strained distance refinement is 2.2 Å in both the �- and �-sub-
units. The HS�-FeIII-Hb intermediate forms a hydrogen bond
with the distal HisE7 NE2 (His-58 in the �-subunit and His-63
in the �-subunit) with distances of 3.0 and 3.2 Å in the �- and
�-subunits, respectively (Fig. 2, C and D).

Inspection of the sulfur anomalous difference map revealed
the presence of another strong anomalous signal, which does
not belong to the sulfur atoms in cysteine or methionine resi-
dues. Located at the surface of the �-subunit near the CE loop,
this sulfur atom is involved in hydrogen bonding interactions
with the backbone carbonyl groups of Phe-43, Pro-44, and
Phe-46 (Fig. 2B). Interestingly, this sulfur atom is positioned at
the mouth of the PHE path, one of proposed entry/exit sites for
the hemoglobin ligands, CO and O2 (20, 21).

Reactivity of FeIII-Hb with Hydrodisulfide—We have postu-
lated the presence of ferrous iron-bound hydrodisulfide (FeII-
S-S�) as an intermediate in the globin-catalyzed sulfide oxida-
tion reaction coordinate (11, 12). To test the possible formation
of this species, we mixed FeIII-Hb with an excess of sodium
hydrodisulfide (Na2S2). A shift in the Soret peak from 405 to
421 nm and the appearance of peaks at 543 and 575 nm were
observed under anaerobic conditions (Fig. 3, A and B). Similar
spectral changes were also observed under aerobic conditions
(Fig. 3C). This spectrum is similar to that of FeIII-Hb treated
with sulfide, which shows absorbance maxima at 423, 541, and
577 nm (11) and suggests direct coordination of the hydrodis-
ulfide to ferric hemoglobin. In the absence of O2, slow reduc-
tion to FeII-Hb was observed as evidenced by a shift in the Soret
peak to 429 nm and the appearance of a broad �/� band cen-
tered at 554 nm (Fig. 3B). A small increase in absorbance was
also observed at 617 nm, indicating the formation of a small
proportion of sulfhemoglobin. Aeration of the reaction mixture
led to the formation of the oxy-FeII-Hb, with a Soret peak at 416

nm and �/� bands at 577 and 541 nm (Fig. 3D). Following
exposure to air, thiosulfate formation was observed.

Characterization of Sulfide Oxidation Products at Low
H2S/FeIII-Hb—We had previously characterized sulfide oxida-
tion products at high H2S/FeIII-Hb ratios (11). However, under
cellular conditions, the ratio of H2S to FeIII-Hb is expected to be
low, and it is not known whether the product distribution
between thiosulfate and polysulfides would be similar or differ-
ent. To address this issue, we assessed the relative concentra-
tion of sulfide oxidation products that were formed when H2S/
FeIII-Hb ratios were 1:1 or 2:1 (Fig. 4A). Under these conditions,
low albeit detectable concentrations of polysulfides (3.0 � 3.6
�M (1:1 ratio) and 20.9 � 9.4 �M (2:1 ratio)) and thiosulfate
(2.9 � 0.3 �M (1:1 ratio) and 13.2 � 0.8 �M (2:1 ratio)) were
formed (Fig. 4A). These values correspond to the presence of
5.8 and 26.4 �M sulfur in the thiosulfate (S2O3

2�) product.
The spectrum of FeIII-Hb treated with stoichiometric Na2S is

indicative of the presence of a mixture of species, most likely
FeIII-Hb and HS�-FeIII-Hb (Fig. 4B). The Soret peak diminishes
in intensity as it shifts from 405 to 409 nm with a prominent
shoulder at 423 nm. In the visible region of the spectrum, the
peaks at 500 and 630 nm associated with FeIII-Hb decrease in
intensity upon the addition of Na2S, and �/� bands at 576 and
541 nm appear (Fig. 4B, black trace). In contrast, in the presence
of excess Na2S, the Soret peak shifts completely to 423 nm,
indicating complete conversion to the HS�-FeIII-Hb species
(11). The original FeIII-Hb spectrum was gradually restored
after prolonged incubation of the sample under aerobic condi-
tions (Fig. 4B, red trace).

TABLE 1
Crystallographic data collection and refinement statistics

Sulfur-bound
hemoglobin

Sulfur-bound hemoglobin
(sulfur anomalous)

Data collection
Wavelength (Å) 1.1272 1.77
Space group P41212 P41212
Cell dimensions

a, b, c (Å) 53,77, 53.77,
193.254

53.52, 53.52, 191.72

�, �, � (degrees) 90, 90, 90 90, 90, 90
Resolution (Å) 50 to 1.8

(1.86 to 1.8)a
48.08 to 2.81 (2.82 to 2.81)

Rsym or Rmerge (%) 7.1 (146.3) 6.1 (10.2)
Rrim or Rmeas (%) 2.5 (65.4) 6.3 (10.6)
I/�I 28.97 (2.80) 34.93 (19.29)
Completeness (%) 99.9 (100) 98.9 (93.4)
Redundancy 11.9 13.7

Refinement
Resolution (Å) 37.30 to 1.80
No. of reflections 27,405
Rwork/Rfree 18.57/22.22
No. of atoms

Protein 2458
Water 169

B-factors
Protein 41.15
Water 46.16

Root mean square deviations
Bond lengths (Å) 0.004
Bond angles (degrees) 0.688

Protein Data Bank code 5UCU
a Values in parentheses are for the highest resolution shell.

FIGURE 3. UV-visible spectral changes in FeIII-Hb by Na2S2. A, FeIII-Hb (10
�M heme) in 100 mM HEPES buffer, pH 7.4, was mixed with 100 �M Na2S2 at
25 °C under anaerobic conditions. The blue line represents the initial spec-
trum of FeIII-Hb, and the red and black spectra were recorded 1 min and 5 h,
respectively, after the addition of Na2S2. The spectrum after 5 h is a mixture of
predominantly FeII-Hb with low levels of sulfhemoglobin (as indicated by the
617-nm feature). B, close-up of the visible region of the spectra in A. C, FeIII-Hb
(10 �M heme) in 100 mM HEPES buffer, pH 7.4, was mixed with 100 �M Na2S2
at 25 °C under aerobic conditions. The blue line represents the initial spectrum
of FeIII-Hb, and the red spectrum was recorded 1 min after the addition of
Na2S2. D, spectral shift induced upon exposure of the sample in A to air. The
red spectrum corresponds to the anaerobic sample of FeII-Hb generated in A
after a 5-h incubation of MetHb with Na2S2, and the black spectrum corre-
sponds to O2-FeII-Hb formed upon exposure to air.
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Fate of Hemoglobin-bound Polysulfides in the Presence of
Reductants—Unlike thiosulfate, the polysulfides formed during
sulfide oxidation remain tightly bound to hemoglobin (11).
Because the intracellular milieu is reducing, we assessed
whether the polysulfide products are sequestered from reduc-
tants or are intercepted by them. First, we examined how a
protein reductant, methionine synthase reductase (MSR),
an NADPH-dependent diflavin oxidoreductase (22), affects
hemoglobin-bound polysulfides. We have previously shown
that MSR reduces HS�-FeIII-Hb to FeII-Hb, which is converted
to O2-FeII-Hb in the presence of air (11). Polysulfides were
allowed to accumulate for 30 min following treatment of
FeIII-Hb with excess Na2S, after which NADPH and MSR were
added to the reaction mixture. Following this treatment, the
polysulfides remained associated with hemoglobin (Fig. 5A),
although the heme spectrum reverted from the initial 423 nm to
a 415-nm Soret peak, indicating formation of O2-FeII-Hb (Fig.
5B). This result indicates that although the polysulfides are no
longer bound to the heme iron following reduction by MSR,
they remain associated with hemoglobin.

Next, we examined the effects of the artificial low molecular
weight reductant tris(2-carboxyethyl)phosphine (TCEP) on the
heme-bound polysulfide pool. TCEP resulted in release of the
bulk (65–75%) of the hemoglobin-bound polysulfides (Fig. 6A).
However, the polysulfides were not recovered quantitatively in
the low molecular weight fraction, indicating that further
chemical reaction of the polysulfides had occurred in the pres-
ence of TCEP. H2S is the expected product of polysulfide reduc-
tion, provided that the sulfur atoms are not oxygenated (e.g. as
in Fe-S-SO3

2�). However, H2S was detected only at very low
levels in the presence of TCEP (�6%) (Fig. 6B).

We then examined the effect of two naturally occurring low
molecular weight reductants, cysteine and glutathione, on the
fate of iron-bound polysulfide. A substantial fraction (52% with
glutathione and 64% with cysteine) of the polysulfide pool was
released from hemoglobin and recovered in solution. In addi-
tion, 32% (with glutathione) and 36% (with cysteine) of the sul-
fur was recovered as H2S following treatment with these reduc-
tants (Fig. 6B).

The low molecular weight products released from hemoglo-
bin-bound polysulfides following treatment with glutathione or

cysteine were characterized by LC/MS after alkylation with
iodoacetamide giving the corresponding carbamidomethyl
(CAM) derivative. GSSH (m/z � 397), glutathione (m/z � 365),
glutathione disulfide (m/z � 613), cysteine (m/z � 179), and
cysteine persulfide (m/z � 211) were identified in samples
treated with the corresponding thiol (Fig. 7, A and B). Persul-
fides and disulfides were not observed in control samples (i.e.
FeIII-Hb pretreated with Na2S alone or buffer incubated with
the thiols for 30 min at 25 °C). The fragmentation patterns for
Cys-S-CAM and Cys-SS-CAM are consistent with those seen
previously (4) (Fig. 8A). The peak at m/z � 90 is assigned to the
product of S–S bond heterolysis in the Cys-SS-CAM precursor
peak (m/z � 211). The fragmentation pattern of GS-CAM and
GSS-CAM confirmed the assignment of these species as de-
scribed in the legend to Fig. 8B.

Discussion

Hemoglobins in organisms adapted to live in sulfide-rich
habitats are specialized to carry sulfide to endosymbionts and
protect against sulfide oxidation (23). The bivalve Lucina pec-
tinata contains three hemoglobins (HbI, HbII, and HbIII) to
transport O2 and H2S from the seawater to symbiotic bacteria
(24, 25). The high sulfide affinity of monomeric HbI (KD � 3
nM) necessitates reduction of ferric to ferrous iron for sulfide

FIGURE 4. Interaction of FeIII-Hb with sulfide at low sulfide to heme ratios.
A, concentrations of sulfane sulfur and thiosulfate formed after 30 min of
incubation of FeIII-Hb (100 �M heme) in aerobic 100 mM HEPES buffer, pH 7.4,
with 100 or 200 �M Na2S at 25 °C. The data represent the mean � S.D. (error
bars) of 3– 4 independent experiments. B, representative spectral changes
observed upon incubation of FeIII-Hb (10 �M heme) with Na2S (10 �M) under
the same conditions as in A. The blue spectrum is of FeIII-Hb, and the black and
red spectra were recorded at 20 min and 24 h, respectively, after the addition
of Na2S.

FIGURE 5. MSR reduces the heme- but not hemoglobin-bound polysul-
fides. A, FeIII-Hb (100 �M heme) was mixed with 0.5 mM Na2S in 100 mM HEPES
buffer, pH 7.4, and incubated aerobically for 30 min at 25 °C before the addi-
tion of MSR and NADPH, after which incubation was continued for 3 h. Then
the sulfane sulfur levels were measured in the protein-bound and -free frac-
tions as described under “Experimental Procedures.” The data represent the
mean � S.D. (error bars) of three independent experiments. B, spectrum of
FeIII-Hb after treatment with Na2S for 30 min (red) followed by a 1-h incuba-
tion with MSR and NADPH (black). Conditions are the same as in A except that
the samples were diluted 1:10 with 100 mM HEPES, pH 7.4.

FIGURE 6. Effect of reductants on hemoglobin-bound sulfane sulfur and
release of H2S. A, FeIII-Hb (100 �M heme) was incubated aerobically for 30
min with 1.0 mM Na2S in 100 mM HEPES buffer, pH 7.4, at 25 °C, followed by a
30-min incubation with or without the addition of a 2 mM concentration each
of TCEP, GSH, or cysteine. The concentration of total and free sulfane sulfur
was determined as described under “Experimental Procedures.” B, FeIII-Hb
(100 �M heme) in 100 mM HEPES buffer, pH 7.4, was incubated aerobically for
30 min with 1.0 mM Na2S at 25 °C, following which H2S was determined by GC
analysis as described under “Experimental Procedures.” The data represent
the mean � S.D. (error bars) of three or more independent experiments.
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release (24). In contrast, human ferric hemoglobin exhibits a
relatively low affinity for sulfide (17 �M) and, in the presence of
O2, catalyzes its conversion to a mixture of thiosulfate and poly-
sulfides (11). Sulfide also undergoes spontaneous oxidation at
neutral pH, and the product distribution is governed by the
ratio of sulfide/O2. When the ratio is high, polysulfides pre-
dominate, and when it is low, thiosulfate and other oxyanions
are formed (26). Our earlier study on catalytic sulfide oxidation
by hemoglobin was performed at high sulfide concentrations,
simulating a high sulfide/O2 ratio, and led to formation of
higher polysulfide than thiosulfate product (11). In this study,
we examined the distribution of products at lower sulfide/heme
ratios (1:1 and 2:1) and found that polysulfides and thiosulfate
were formed in approximately equal concentration (Fig. 4A).

Following H2S entry, the first step in the hemoglobin-cata-
lyzed sulfide oxidation cycle is formation of a ferric sulfide
intermediate (HS�-FeIII-Hb) (11). In the crystal structure of
human hemoglobin, a sulfide ligand to the heme iron was
observed in the �- and �-subunits (Fig. 2, C and D). In addition,
a second sulfur atom was seen at the surface of the �-subunit of
hemoglobin (Fig. 2B). The extra sulfur atom is located at the
mouth of the postulated PHE path used by ligands to access the
heme iron, which was identified using xenon to fill cavities in
the crystal structure and by atomistic molecular dynamics sim-
ulations (20, 21). Simulations revealed that the PHE path is the
major CO escape route from the �-subunit in the R-state of
hemoglobin (20). We conclude that the extra sulfur atom in our
crystal structure represents the entry/exit point for H2S. To the
best of our knowledge, this is the first direct evidence for the use

of the PHE path by a ligand for accessing the heme. The ligand
entry/exit points are predicted to be different in the �- and
�-subunits (20, 27, 28), in agreement with our observation that
the extra sulfur anomalous signal was observed in the �-subunit
but not in the �-subunit.

An Fe–S distance (unrestrained during refinement) of 2.2 Å
was observed in the �- and �-subunits (Figs. 2 (C and D) and
9A). By comparison, the crystal structure of ferric sulfide HbI
form L. pectinata revealed an Fe–S bond distance of 2.3 Å (Fig.
9B). Based on a computational analysis of sulfide-bound to fer-
ric myoglobin, different Fe–S bond lengths were predicted,
depending on whether the distal ligand is a sulfide anion (2.24
Å) or H2S (2.50 Å) (12). Our crystallographic results agree with
the calculated bond lengths for FeIII-HS� (2.24 Å) and HisF8
NE2-FeIII (2.12 Å) in a low spin HS�-FeIII complex and indicate
that we have captured the first postulated sulfide oxidation
intermediate (11, 12).

In human hemoglobin, the sulfide forms a hydrogen bond
with the His-58 nitrogen (Fig. 9A). In the L. pectinata HbI, the
corresponding interaction involves Gln-64, with a longer and
more flexible side chain (Fig. 9B). Furthermore, in HbI, four
phenylalanine residues form a hydrophobic cage around the
sulfide ligand, whereas Gln-64 seals off access to the solvent.
The tight aromatic pocket contributes to both the stabilization
of and the high affinity for the sulfide ligand in HbI, properties
suited for its role as a sulfide carrier. In human hemoglobin,
smaller hydrophobic residues (valine and leucine) substitute for
the phenylalanines in HbI (Fig. 9A). These less bulky amino
acids with flexible side chains in the distal heme pocket of
human hemoglobin accommodate binding of additional equiv-
alents of sulfur and O2 and enable the observed oxidation
chemistry. Another structural difference between sulfide-com-
plexed HbI and human hemoglobin is in the conformation of
the CE loop, which we have identified as the entry/exit site for
H2S (Fig. 9C). It is not known whether the conformational dif-
ference has a bearing on the kinetics of H2S access and/or sul-
fide oxidation in human hemoglobin.

Of the two products of hemoglobin-catalyzed sulfide oxida-
tion observed in vitro, thiosulfate is released into solution,
whereas the polysulfides remain iron-bound. The fact that the
intracellular environment is reducing begs the question of
whether the polysulfides evade reduction by being sequestered
in the distal pocket. We found that MSR, which can lead to
heme iron reduction, does not lead to release of polysulfides
into solution (Fig. 5). The artificial triphosphine reductant
TCEP led to the loss of hemoglobin-bound polysulfides, albeit
without the release of H2S, the expected product of polysulfide
reduction. The lack of detectable H2S is explained by the reac-
tion of TCEP (Ph3P) with polysulfides to form thiophosphines
(Ph3P(S)), described previously (29). In contrast, polysulfides
were released from hemoglobin with formation of H2S in the
presence of the physiologically relevant low molecular weight
reductants, cysteine and glutathione (Fig. 6, A and B). The other
products of the reaction between glutathione or cysteine and
polysulfides were the corresponding persulfides, GSSH and
Cys-SSH. These persulfides, in turn, reacted with glutathione
or cysteine, generating H2S and the oxidized products, glutathi-
one disulfide and cystine, which were detected by mass spec-

FIGURE 7. Mass spectrometric (LC-MS) analysis of the reaction of cysteine
or glutathione with FeIII-Hb treated with Na2S. Hydrophilic interaction liq-
uid ion chromatography was used to elute the components, as described
under “Experimental Procedures.” A, traces are for the 0.5-atomic mass unit
windows for Cys-S-CAM (dashed black line, m/z � 179.25) and Cys-SS-CAM
(dotted red line, m/z � 211.25). B, traces are for the 0.5-atomic mass unit win-
dows for GS-SG (solid black line, m/z � 613.25), GSH (dashed black line, m/z �
308.25), GS-CAM (solid red line, m/z � 365.25), and GSS-CAM (dotted red line,
m/z � 397.25). In each panel, the top chromatogram represents samples con-
taining reductant only (Cys or GSH), and the bottom one represents samples
containing FeIII-Hb � Na2S that were treated with reductant. Scans were col-
lected as described under “Experimental Procedures,” and masses for the
selected ions were extracted using 0.5 Da windows. The peaks labeled with
asterisks in A were present in all samples. They are likely to represent Tris
(m/z � 122; red) and HEPES (m/z � 241; black), which were present in the
samples.
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trometry (Figs. 7 and 8). In contrast to cysteine (5 �M), the
intracellular glutathione concentration in erythrocytes is high
(3.2 mM) (30). Our results suggest that polysulfides, if formed in
erythrocytes, would react with glutathione, forming GSSH. The
latter, in turn, could serve as a persulfide donor for protein
persulfidation, a posttranslational modification used for sulfide
signaling (1). GSSH is a substrate for thiol sulfurtransferases,
which could, in turn, catalyze protein persulfidation, as postu-
lated (2).

In summary, we provide crystallographic evidence for the
route used by sulfide to access the distal heme site in human
hemoglobin and have captured the first intermediate in the
sulfide oxidation reaction (i.e. HS�-FeIII-Hb). We have also
demonstrated the ability of hydrodisulfide to bind to FeIII-Hb
and be converted to products, consistent with its proposed rel-
evance as an intermediate during sulfide oxidation. The suscep-
tibility of iron-bound polysulfides to reduction by glutathione
suggests that GSSH rather than polysulfides might be involved
in sulfide signaling via protein persulfidation.

Experimental Procedures

Materials—Lyophilized human FeIII-Hb, glutathione, cys-
teine, NADPH, and sodium sulfide nonahydrate were pur-
chased from Sigma; TCEP was from Gold Biotechnology (St.
Louis, MO); and sodium disulfide (Na2S2) was from Dojindo
Molecular Technologies (Rockville, MD). Recombinant human
MSR was prepared as described previously (22).

Measurement of Polysulfides—Sulfane sulfur concentration
was measured using the cold cyanolysis method as described
previously (11). The concentration of sulfane sulfur was esti-
mated using a calibration curve prepared using potassium thio-
cyanate samples of known concentration.

Treatment of Hemoglobin-Sulfide with MSR—FeIII-Hb (100
�M heme concentration in 100 mM HEPES-Na� buffer, pH 7.4)
was incubated aerobically for 30 min at 25 °C with Na2S (0.5
mM). Then, the reaction mixture was divided equally into two
aliquots. To the first aliquot, MSR and NADPH were added to
final concentrations of 8 �M and 1 mM, respectively, while the
second aliquot was left untreated. Both aliquots were incubated
aerobically at 25 °C for 3 h. Formation of O2-FeII-Hb in the
reaction mixture was monitored spectrophotometrically. Free
and protein-bound polysulfides were separated using centrifu-
gal filters (Amicon Ultracell with a 10 kDa cut-off). Samples
(400 – 450 �l) were placed on the filter and centrifuged at
10,000 � g and 4 °C for 10 –15 min. The filtrate containing the
low molecular weight sulfane sulfur fraction was collected sep-
arately from the protein fraction on the filter, and the concen-
tration of sulfane sulfur in each fraction was determined.

Release of H2S from Iron-bound Polysulfides—FeIII-Hb (100
�M heme concentration) in 100 mM HEPES-Na� buffer, pH 7.4,
was incubated aerobically at 25 °C for 30 min with Na2S (1 mM)
to generate iron-bound polysulfides as described (11). Then 0.5
ml of the reaction mixture was placed in the barrel of a 20-ml

FIGURE 8. MS/MS spectra of the reactions of cysteine and glutathione with FeIII-Hb treated with sulfide. MS/MS spectra were extracted at 14.3 min for
Cys-S-CAM (A; m/z � 179), at 14.5 min for GS-CAM (B; m/z � 365, top), at 13.8 min for Cys-SS-CAM (C; m/z � 211) and at 14.3 for GS-S-CAM (D; m/z � 397). The
fragmentation of GS-S-CAM produced peaks corresponding to the loss of glycine (m/z � 322), pyroglutamic acid (m/z � 268), pyroglutamic acid � NH3 (m/z �
251), CAM persulfide � CO2 (m/z � 231), pyroglutamic acid � glycyl (m/z � 177), pyroglutamic acid � glycine � CO (m/z � 165), and loss of pyroglutamic acid
� glycine � CO � NH3 (m/z � 148). We also observed the glyoxylic acid imine (m/z � 74) and S-S-CAM (m/z � 122) cation peaks. Fragmentation of GS-CAM
shows the homologous fragments missing the additional sulfur atom (m/z � 290, 236, 219, 133, and 116). For the fragmentation of the protonated Cys-SS-CAM
(m/z � 211), the main products are consistent with glyoxylic acid imine (m/z � 74), protonated 2-thiaglyoxamide (m/z � 90), 3-thia-alanine (m/z � 120),
cysteine persulfide imine (m/z � 152), and protonated-3-thio-propenoic acid (m/z � 105) cation. The fragment peak at m/z � 120 is also consistent with the
product of the loss of formic acid, CO, and NH3 from the persulfide precursor.
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polypropylene syringe, and the headspace was flushed six times
with N2 using a three-way stopcock and then filled with N2 to a
total volume (gas plus liquid) of 20 ml. The syringe was kept at
25 °C, and 200-�l gas samples were aspirated at the desired
times. Within 20 min, the H2S concentration in the gas phase
stabilized at the level of �0.25– 0.3 �M. Then the plunger was
pushed to remove all but 2 ml of gas from the syringe, and 5 �l
of 200 mM reductant (GSH, cysteine, or TCEP) in 100 mM

HEPES-Na� buffer, pH 7.4, was added to the reaction mixture

to obtain a final concentration of 2 mM. The pH of the TCEP
solution was adjusted to 7.0 with saturated potassium carbon-
ate. The syringe was filled with N2 to a total volume of 20 ml and
incubated at 25 °C. At the desired time intervals, 200-�l ali-
quots were removed from the gas phase. The quantity of H2S
in the samples was measured using a gas chromatograph
equipped with 355 sulfur chemiluminescence detector (GC-
SCD) (Agilent) as described (31).

Mass Spectrometric Analysis—FeIII-Hb (100 �M in heme) in
100 mM HEPES-Na� buffer, pH 7.4, was incubated with 1 mM

Na2S for 30 min at 25 °C. Then the mixture was divided into
three aliquots. The control sample received no further treat-
ment; the second and third aliquots were treated with GSH or
cysteine to a final concentration of 2 mM. All three aliquots were
incubated for an additional 30 min at 25 °C. Then the reaction
mixtures were filtered using Amicon filters (10 kDa molecular
mass cut-off), and the filtrate was incubated with 10 mM iodo-
acetamide for 1 h at 25 °C in the dark, frozen, and stored at
�80 °C. Control samples containing buffer with 2 mM GSH or
cysteine were prepared and treated with iodoacetamide in par-
allel. The total and low molecular weight sulfane sulfur concen-
tration was measured in all samples before and after incubation
with reductants.

Aliquots (5 �l) of the reaction mixture were injected into a
4.6 � 100-mm amide XBridge column (Waters, Milford, MA)
and eluted at a flow rate of 0.5 ml/min using Buffers A (20 mM

ammonium acetate, 20 mM ammonium hydroxide, pH 9.0) and
B (acetonitrile) and the following steps: isocratic for 2 min with
5% A, linear gradient from 5 to 95% A for 15 min, isocratic for 5
min with 5% B, and reequilibration for 10 min with 5% A. The
effluent was coupled to a Sciex 4000 QTrap triple quadrupole
mass spectrometer operating in either Q1 scan (MS) or MS2
(MS/MS) mode. Other instrument parameters were as follows:
curtain gas � 20 liters/min, ion spray voltage � 5500 V, elec-
trospray ionization temperature � 650 °C, GS1 � GS2 � 60
liters/min, declustering potential � 80 V, entrance potential �
10 V, exit potential � 15 V, collisional energy � 30 V (for
MS/MS). Scans for MS were from m/z � 5 to 1005 in 1.0 s, and
for MS/MS, they were from m/z � 5 to 650 in 0.25 s.

Reaction of FeIII-Hb with Hydrodisulfide—The experiments
were performed inside an anaerobic chamber (Vacuum Atmo-
spheres Co., Hawthorne, CA) with an atmosphere of N2 and
containing �0.2– 0.5 ppm O2. A stock solution of Na2S2 was
prepared in anaerobic 100 mM Tris-HCl buffer, pH 8.0. Spectra
were monitored following the addition of Na2S2 (100 �M final
concentration) to FeIII-Hb (10 �M heme) in anaerobic 100 mM

HEPES-Na� buffer, pH 7.4, in a sealed cuvette.
X-ray Crystallography of FeIII-Hb in the Presence of H2S—

Crystallization was carried as described previously (19) with the
following modifications. Briefly, 50 mg of human FeIII-Hb was
dissolved in 1 ml of 30 mM HEPES-Na�, pH 7.4, and dialyzed
overnight against 1 liter of 1.6 M K2HPO4/NaH2PO4 buffer, pH
6.7, at 4 °C. The protein was concentrated to 60 mg/ml, and 200
�l of the protein solution was mixed with 40 �l of toluene and
300 �l of 2.8 M K2HPO4/NaH2PO4 buffer, pH 7.2, from which
5-�l drops were placed on coverslips. The latter were inverted
on wells containing 2.3 M K2HPO4/NaH2PO4 reservoir buffer,
pH 7.2, and sealed. Crystals were obtained at 20 °C in 1 week by

FIGURE 9. Comparison of the crystal structures of sulfide-bound human
hemoglobin and HbI from L. pectinata. The distal heme pocket of the
�-subunit human hemoglobin in complex with sulfide (A) and that of L. pec-
tinata HbI in complex with sulfide (B). The distal heme site of L. pectinata HbI
contains a “Phe cage” comprising Phe-28 and Phe-68, which are replaced by
Leu-29 and Val-62 in human hemoglobin. The interaction between Gln-64 in
L. pectinata HbI and sulfide is replaced by His-58 and sulfide in human hemo-
globin. C, the conformation of the CE loop (enclosed by the dashed red circle)
differs in the structures of HbI and human hemoglobin. The CE loop in human
hemoglobin is postulated to be the entry/exit point for sulfide.
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the vapor diffusion method. The crystals were harvested by
cryo-loops and soaked for 1 h at 20 °C in a cryoprotectant solu-
tion containing 50 mM Na2S, 360 mM K2HPO4/NaH2PO4
buffer, pH 7.2, and 14% (v/v) glycerol. The crystals were flash-
frozen in liquid N2 and stored for data collection. The native
(1.8 Å resolution) and sulfur anomalous (2.8 Å resolution) data
sets of the crystals were collected at the LS-CAT beamline
21-ID-D (Advanced Photon Source, Argonne National Labora-
tory) at 1.13- and 1.77-Å wavelengths, respectively (Table 1).

Data sets were integrated and scaled using HKL2000. The
space group and unit cell dimensions of the human HS�-
FeIII-Hb complex were P41212 and a � b � 53.77 Å, c � 193.25
Å, � � � � � � 90°. The phases of the HS�-FeIII-Hb complex
were obtained by molecular replacement using Phaser (32) with
the known structure of human hemoglobin as a search model
(Protein Data Bank code 3D7O) (19). The model was built using
COOT (33), and refinement calculations were carried out using
the Phenix.Refine (34). The sulfur anomalous data set collected
at 1.77-Å wavelength (2.8 Å resolution) was processed by XDS
(35). After molecular replacement using Phaser (32), the sulfur
anomalous difference map of the HS�-FeIII-Hb complex was
calculated using the program phenix.maps (36). All molecular
structure figures were prepared using PyMOL (Schrödinger,
LLC, New York).
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and co-wrote the manuscript with V. V., U.-S. C., and J. S. All
authors approved the final version of the manuscript.
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