66,594 research outputs found

    A Revised Effective Temperature Scale for the Kepler Input Catalog

    Full text link
    We present a catalog of revised effective temperatures for stars observed in long-cadence mode in the Kepler Input Catalog (KIC). We use SDSS griz filters tied to the fundamental temperature scale. Polynomials for griz color-temperature relations are presented, along with correction terms for surface gravity effects, metallicity, and statistical corrections for binary companions or blending. We compare our temperature scale to the published infrared flux method (IRFM) scale for VJKs in both open clusters and the Kepler fields. We find good agreement overall, with some deviations between (J - Ks)-based temperatures from the IRFM and both SDSS filter and other diagnostic IRFM color-temperature relationships above 6000 K. For field dwarfs we find a mean shift towards hotter temperatures relative to the KIC, of order 215 K, in the regime where the IRFM scale is well-defined (4000 K to 6500 K). This change is of comparable magnitude in both color systems and in spectroscopy for stars with Teff below 6000 K. Systematic differences between temperature estimators appear for hotter stars, and we define corrections to put the SDSS temperatures on the IRFM scale for them. When the theoretical dependence on gravity is accounted for we find a similar temperature scale offset between the fundamental and KIC scales for giants. We demonstrate that statistical corrections to color-based temperatures from binaries are significant. Typical errors, mostly from uncertainties in extinction, are of order 100 K. Implications for other applications of the KIC are discussed.Comment: Corrected for sign flip errors in the gravity corrections. Erratum to this paper is attached in Appendix. Full version of revised Table 7 can be found at http://home.ewha.ac.kr/~deokkeun/kic/sdssteff_v2.dat.g

    Vibrational Modes in LiBC: Theory Compared with Experiment

    Full text link
    The search for other superconductors in the MgB2 class currently is focussed on Li{1-x}BC, which when hole-doped (concentration x) should be a metal with the potential to be a better superconductor than MgB2. Here we present the calculated phonon spectrum of the parent semiconductor LiBC. The calculated Raman-active modes are in excellent agreement with a recent observation, and comparison of calculated IR-active modes with a recent report provides a prediction of the LO--TO splitting for these four modes, which is small for the B-C bond stretching mode at ~1200 cm^{-1}, but large for clearly resolved modes at 540 cm^{-1} and 620 cm^{-1}.Comment: 4 pages, two embedded figures. Physica B (in press

    Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys

    Get PDF
    Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L10_0 and L12_2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10_0 AuFe, L12_2 Au3_3Fe, and L12_2 AuFe3_3 structures are unstable in DFT. However, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. This incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.Comment: 23 pages, 11 figure

    Sea flavor content of octet baryons and intrinsic five-quark Fock states

    Full text link
    Sea quark contents of the octet baryons are investigated by employing an extended chiral constituent quark approach, which embodies higher Fock five-quark components in the baryons wave-functions. The well-known flavor asymmetry of the nucleon sea dˉuˉ\bar{d}-\bar{u}, is used as input to predict the probabilities of uˉ\bar{u}, dˉ\bar{d} and sˉ\bar{s} in the nucleon, Λ\Lambda, Σ\Sigma and Ξ\Xi baryons, due to the intrinsic five-quark components in the baryons wave functions.Comment: 22 page

    Strangeness spin, magnetic moment and strangeness configurations of the proton

    Full text link
    The implications of the empirical signatures for the positivity of the strangeness magnetic moment μs\mu_s, and the negativity of the strangeness contribution to the proton spin Δs\Delta_s, on the possible uudssˉuuds\bar s configurations of five quarks in the proton are analyzed. The empirical signs for the values of these two observables can only be obtained in configurations where the uudsuuds system is orbitally excited and the sˉ\bar s quark is in the ground state. The configurations, in which the sˉ\bar s is orbitally excited, which include the conventional K+Λ0K^+\Lambda^0 congfiguration, with the exception of that, in which the uudsuuds component has spin 2, yield negative values for μs\mu_s. Here the strangeness spin Δs\Delta_s, the strangeness magnetic moment μs\mu_s and the axial coupling constant GAsG_A^s are calculated for all possible configurations of the uudssˉuuds\bar s component of the proton. In the configuration with [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S flavor-spin symmetry, which is likely to have the lowest energy, μs\mu_s is positive and ΔsGAs1/3μs\Delta_s\simeq G_A^s\simeq -1/3\mu_s.Comment: 17 page

    Electronic structure and Magnetism in BaMn2_2As2_2 and BaMn2_2Sb2_2

    Full text link
    We study the properties of ThCr2_2Si2_2 structure BaMn2_2As2_2 and BaMn2_2Sb2_2 using density functional calculations of the electronic and magnetic as well experimental measurements on single crystal samples of BaMn2_2As2_2. These materials are local moment magnets with moderate band gap antiferromagnetic semiconducting ground states. The electronic structures show substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin configuration for the nominally d5d^5 Mn. The results are discussed in the context of possible thermoelectric applications and the relationship with the corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)2_2As2_2

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Environment-dependent dissipation in quantum Brownian motion

    Get PDF
    The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic environments, without performing the Markovian approximation. Our results allow to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
    corecore