3,603 research outputs found

    Progress Report on Reverse Bending Fatigue Testing of Zry-4 Surrogate Rod

    Get PDF

    Adventitious shoot regeneration from leaf explants of miniature paprika (Capsicum annuum) ‘Hivita Red’ and ‘Hivita Yellow’

    Get PDF
    A simple and efficient protocol was developed for in vitro propagation of two miniature paprika cultivars. Seeds of miniature paprika (Capsicum annuum) ‘Hivita Red’ and ‘Hivita Yellow’ were decontaminated and placed in a petri dish containing a half-strength MS medium and then wereincubated in the dark for 7 10 days for germination. Leaf explants excised from one month-old aseptic seedlings were cultured on a MS medium supplemented with TDZ (0.1, 0.5, 1.0, 2.0, or 3.0 mgL-1) alone or in a combination with NAA (0.1 or 0.01 mgL-1) for four weeks. The highest number of regenerated shoot buds was obtained when leaf explants were cultured on a MS medium supplemented with 2.0 mgL-1 TDZ and 0.1 mgL-1 NAA with an average shoots per explant of 8.0 in ‘Hivita Red’ and 5.6 in ‘Hivita Yellow’. Regenerated shoot buds were separated and transferred onto a MS medium without growth regulators for shoot growth and rooting. Plantlets were successfully acclimatized in a greenhouse andcultivated for three months. After about two months, they started to produce flowers and continuously produced fruits. Morphology and fruit shape of regenerated plants were normal and plants set seeds asthe same as to the seed-raised plants

    Kinetics of the reduction of wüstite by hydrogen and carbon monoxide for the chemical looping production of hydrogen

    Get PDF
    Hydrogen of very high purity can be produced via the steam-iron process, in which steam oxidises metallic Fe in 3/4Fe + H2O→1/4Fe3O4 + H2. It is then advantageous to oxidise Fe3O4 in air to Fe2O3, an oxygen-carrier. This higher oxide of Fe is then reduced to regenerate metallic iron by reacting with synthesis gas, producing metallic Fe and possibly some wüstite (FexO, 0<x<1). In this three-stage process, the reduction of FexO to Fe is the slowest reaction. This paper is concerned with the kinetics of the reduction of wüstite (FexO) by reaction with CO, and, or H2. Starting with pure (99 wt%) wüstite, the intrinsic kinetics of its reduction to metallic iron were measured in fluidised beds at different temperatures. The reaction was found to have 3 distinct stages, (i) the removal of lattice oxygen in wüstite, (ii) rate increasing with conversion of solid and (iii) rate decreasing with conversion of solid. A random pore model was used to simulate the latter stages of the reduction of wüstite by either H2 or CO or a mixture of the two. It was found that the intrinsic rate of reduction in H2 is substantially faster than with CO, whereas the resistances to diffusion of H2 and CO through the product layer of Fe are comparable; these factors account for differences in the overall rates observed with these gases.This is the final published version. It is also available from the publisher at: http://www.sciencedirect.com/science/article/pii/S000925091400428X

    UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells

    Get PDF
    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al

    A real-time web-based networked control system education platform

    Get PDF
    Networked control systems have recently experienced a surge in fundamental theoretical results ignited by numerous advantages of introducing shared multipurpose communication networks in control systems. Regarding developments on the practical side, however, a networked control system is still wanting when it comes to experimental platforms suitable for research and educational purposes, which contributes to most of networked control system theory being validated by means of numerical examples and simulations. This paper addresses this issue by presenting a low-cost real-time networked control system platform, based on custom hardware and software solutions that can be readily explored with the sole use of a web browser connected to the Internet. The technical decisions made during development represent a fundamentally novel take on networked control system experimental platforms that can potentially be reproduced by several universities. The platform provides the user with multiple controller and input reference options, network configurations, delay statistics, and even a downloadable file containing advanced experiment data. A survey conducted with students located over 1200 km away from the platform who used it during laboratory assignments highlight the system’s usability and interactivity, and supports the platform is suitable for educational purposes

    Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films

    Get PDF
    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01× 10-4 Ω cm. However, after annealing at 450 °C in air, the electrical resistivity of the AZO films increased to 1.97× 10-1 Ω cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H2 recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H2 annealing. A photoluminescence study showed that oxygen interstitial (Oi′) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films. © 2008 American Institute of Physics

    A methodology for strategy-oriented project portfolio selection taking dynamic synergy into considerations

    Get PDF
    The selection of an optimal project portfolio from multiple project proposals to implement management strategy is always a challenge task for project managers, especially, in the selection of large-scale and complicated projects. This is particular true because project portfolio selection decisions have to be made based on complicated evolution, comprehensive strategic criteria and dynamic synergies. This paper presents a proposed methodology of system dynamic model with consideration of dynamic synergies to predict the value of strategic realization through project portfolio implementation. This method can be applied in the project portfolio selection process, which consists of three procedures: project elimination by resource constraints, project functional value determination and system dynamics approach modelling simulation. In this case, dynamic synergy considerations can help to produce more rational selection results while strategy-oriented selection can ensure that the selected project portfolio aligns with a company’s strategy. A case study is used to demonstrate the application of the proposed methodology. The results show that the proposed method can help project managers to select an optimal project portfolio with maximal strategic criteria. The proposed method can be incorporated into expert systems in the organizations to enhance the organizational objective priorities in the decision-making process

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system
    corecore