36 research outputs found

    Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland

    Get PDF
    Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 mug/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation

    Functional Role of Gonadotrope Plasticity and Network Organization

    No full text
    Gonadotrope cells of the anterior pituitary are characterized by their ability to mount a cyclical pattern of gonadotropin secretion to regulate gonadal function and fertility. Recent in vitro and in vivo evidence suggests that gonadotropes exhibit dramatic remodeling of the actin cytoskeleton following gonadotropin-releasing hormone (GnRH) exposure. GnRH engagement of actin is critical for gonadotrope function on multiple levels. First, GnRH-induced cell movements lead to spatial repositioning of the in vivo gonadotrope network toward vascular endothelium, presumably to access the bloodstream for effective hormone release. Interestingly, these plasticity changes can be modified depending on the physiological status of the organism. Additionally, GnRH-induced actin assembly appears to be fundamental to gonadotrope signaling at the level of extracellular signal-regulated kinase (ERK) activation, which is a well-known regulator of luteinizing hormone (LH) β-subunit synthesis. Last, GnRH-induced cell membrane projections are capable of concentrating LHβ-containing vesicles and disruption of the actin cytoskeleton reduces LH secretion. Taken together, gonadotrope network positioning and LH synthesis and secretion are linked to GnRH engagement of the actin cytoskeleton. In this review, we will cover the dynamics and organization of the in vivo gonadotrope cell network and the mechanisms of GnRH-induced actin-remodeling events important in ERK activation and subsequently hormone secretion

    Progesterone stimulates histone citrullination to increase IGFBP1 expression in uterine cells

    Get PDF
    Peptidylarginine deiminases (PAD) enzymes were initially characterized in uteri, but since then little research has examined their function in this tissue. PADs post-translationally convert arginine residues in target proteins to citrulline and are highly expressed in ovine caruncle epithelia and ovine uterine luminal epithelial (OLE)-derived cell line. Progesterone (P4) not only maintains the uterine epithelia but also regulates the expression of endometrial genes that code for proteins that comprise the histotroph and are critical during early pregnancy. Given this, we tested whether P4 stimulates PAD-catalyzed histone citrullination to epigenetically regulate expression of the histotroph gene insulin-like growth factor binding protein 1 (IGFBP1) in OLE cells. 100 nM P4 significantly increases IGFBP1 mRNA expression; however, this increase is attenuated by pre-treating OLE cells with 100 nM progesterone receptor antagonist RU486 or 2 microM of a pan-PAD inhibitor. P4 treatment of OLE cells also stimulates citrullination of histone H3 arginine residues 2, 8, and 17 leading to enrichment of the ovine IGFBP1 gene promoter. Since PAD2 nuclear translocation and catalytic activity require calcium, we next investigated whether P4 triggers calcium influx in OLE cells. OLE cells were pre-treated with 10 nM nicardipine, an L-type calcium channel blocker, followed by stimulation with P4. Using fura2-AM imaging, we found that P4 initiates a rapid calcium influx through L-type calcium channels in OLE cells. Furthermore, this influx is necessary for PAD2 nuclear translocation and resulting citrullination of histone H3 arginine residues 2, 8, and 17. Our work suggests that P4 stimulates rapid calcium influx through L-type calcium channels initiating PAD-catalyzed histone citrullination and an increase in IGFBP1 expression

    GnRH Stimulates Peptidylarginine Deiminase Catalyzed Histone Citrullination in Gonadotrope Cells

    No full text
    Peptidylarginine deiminase (PAD) enzymes convert histone tail arginine residues to citrulline resulting in chromatin decondensation. Our previous work found that PAD isoforms are expressed in female reproductive tissues in an estrous cycle-dependent fashion, but their role in the anterior pituitary gland is unknown. Thus, we investigated PAD expression and function in gonadotrope cells. The gonadotrope-derived LbetaT2 cell line strongly expresses PAD2 at the protein level compared with other PAD isoforms. Consistent with this, PAD2 protein expression is highest during the estrous phase of the estrous cycle and colocalizes with the LH beta-subunit in the mouse pituitary. Using the GnRH agonist buserelin (GnRHa), studies in LbetaT2 and mouse primary gonadotrope cells revealed that 30 minutes of stimulation caused distinct puncta of PAD2 to localize in the nucleus. Once in the nucleus, GnRHa stimulated PAD2 citrullinates histone H3 tail arginine residues at sites 2, 8, and 17 within 30 minutes; however, this effect and PAD2 nuclear localization was blunted by incubation of the cells with the pan-PAD inhibitor, biphenyl-benzimidazole-Cl-amidine. Given that PAD2 citrullinates histones in gonadotropes, we next analyzed the functional consequence of PAD2 inhibition on gene expression. Our results show that GnRHa stimulates an increase in LHbeta and FSHbeta mRNA and that this response is significantly reduced in the presence of the PAD inhibitor biphenyl-benzimidazole-Cl-amidine. Overall, our data suggest that GnRHa stimulates PAD2-catalyzed histone citrullination in gonadotropes to epigenetically regulate gonadotropin gene expression

    Loss of Foxm1 Results in Reduced Somatotrope Cell Number during Mouse Embryogenesis.

    Get PDF
    FOXM1, a member of the forkhead box transcription factor family, plays a key role in cell cycling progression by regulating the expression of critical G1/S and G2/M phase transition genes. In vivo studies reveal that Foxm1 null mice have a 91% lethality rate at e18.5 due to significant cardiovascular and hepatic hypoplasia. Thus, FOXM1 has emerged as a key protein regulating mitotic division and cell proliferation necessary for embryogenesis. In the current study, we assess the requirement for Foxm1 in the developing pituitary gland. We find that Foxm1 is expressed in the pituitary at embryonic days 10.5-e18.5 and localizes with markers for active cell proliferation (BrdU). Interestingly, direct analysis of Foxm1 null mice at various embryonic ages, reveals no difference in gross pituitary morphology or cell proliferation. We do observe a downward trend in overall pituitary cell number and a small reduction in pituitary size in e18.5 embryos suggesting there may be subtle changes in pituitary proliferation not detected with our proliferation makers. Consistent with this, Foxm1 null mice have reductions in both the somatotrope and gonadotrope cell populations

    No significant difference in M phase or G2 phase is apparent in <i>Foxm1</i><sup><i>-/-</i></sup> pituitary glands.

    No full text
    <p>Immunohistochemistry was performed on midsagittal pituitaries from <i>Foxm1</i><sup><i>-/-</i></sup> embryos (KO) and wild type littermates (WT) at embryonic day 10.5 (e10.5), e12.5, and e14.5 embryos to identify cellular proliferation. (A-F) Staining of phosphohistone H3 (pHH3, green) allows for differentiation between cells in M phase (brightly stained, white arrow) and G2 phase (dimly stained; red arrow). Cells in M phase, G2 phase and total cells per pituitary section were counted for each age and genotype. Graphs represent the ratio of cells in (G-I) M phase or (J-L) G2 phase to total DAPI (blue) counts per pituitary section. Data are expressed as mean ± SEM of four or five littermate pairs for each age. The data were analyzed by Student <i>t</i>-test to determine significant difference between WT and KO.</p

    Analysis of the Calcium-Dependent Regulation of Proline-Rich Tyrosine Kinase 2 by Gonadotropin-Releasing Hormone

    No full text
    Calcium influx through L-type voltage-gated calcium channels (VGCC) is required for ERK activation induced by GnRH in pituitary gonadotropes. The current studies investigate VGCC-sensitive catalytic activities that may lie upstream of ERKs within the GnRH signaling network. Ion exchange fractionation of αT3-1 cell lysates subjected to anti-phosphotyrosine Western blot analysis revealed a nifedipine-sensitive activity that colocalized with proline-rich tyrosine kinase (Pyk) 2 immunoreactivity. Phosphorylated Pyk2 was present in αT3-1 cells after GnRH agonist administration for a time course that lasted up to 4 h. Pyk2 phosphorylation was also evident in gonadotropes in vivo after administration of a bolus of GnRH. Knockdown of Pyk2 using specific small interfering RNAs revealed that Pyk2 contributed to modulation of GnRH-induced ERK but not c-Jun N-terminal kinase activation. Using pharmacological approaches, calmodulin (Cam) was also demonstrated to be required for the phosphorylation of Pyk2. Pyk2 was shown to bind specifically to a Cam agarose affinity column in a calcium-dependent manner, suggesting Cam and Pyk2 are capable of forming a complex. Specific mutation of a putative Cam binding motif within the catalytic domain of Pyk2 blocked association with Cam and uncoupled Pyk2’s ability to activate ERK-dependent gene transcription. Thus, GnRH induces Pyk2 tyrosine phosphorylation dependent upon calcium flux within gonadotropes. Furthermore, association of Pyk2 and Cam may be required to mediate the effects of calcium on Pyk2 phosphorylation and subsequent activation of ERKs by GnRH
    corecore