181 research outputs found

    Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production

    Get PDF
    Ageing is accompanied by reduced functioning of the immune system, termed immunesenescence which is associated with increased risk of infection and mortality. However the immune system does not operate in isolation and can be modified by many environmental factors, including stress. In this study we determined whether physical stress (hip fracture) and psychological distress (depressive symptoms) had additive effects upon the aged immune system, specifically on monocyte numbers and function. We assessed immune function in 101 hip fracture patients (81 female) 6 weeks and 6 months after injury and 43 healthy age matched controls (28 females). Thirty-eight of the hip fracture group were found to be depressed at the 6 week sampling. No differences in peripheral monocyte count, distribution of monocyte subsets or TNFα secretion were observed between hip fracture patients and healthy controls. However we observed significantly reduced superoxide production in response to Escherichia coli in the monocytes of hip fracture patients who developed depressive symptoms compared with non-depressed hip fracture patients (p = 0.002) or healthy controls (p = 0.008) 6 weeks after the fracture which remained decreased 6 months following injury. In previous studies we have shown an effect of depression on neutrophil superoxide generation in hip fracture patients, suggesting a particular susceptibility of this aspect of immune cell function to psychological stress

    The use and predictive performance of the Peninsula Health Falls Risk Assessment Tool (PH-FRAT) in 25 residential aged care facilities : a retrospective cohort study using routinely collected data

    Get PDF
    Background: The Peninsula Health Falls Risk Assessment Tool (PH-FRAT) is a validated and widely applied tool in residential aged care facilities (RACFs) in Australia. However, research regarding its use and predictive performance is limited. This study aimed to determine the use and performance of PH-FRAT in predicting falls in RACF residents. Methods: A retrospective cohort study using routinely-collected data from 25 RACFs in metropolitan Sydney, Australia from Jul 2014-Dec 2019. A total of 5888 residents aged ≥65 years who were assessed at least once using the PH-FRAT were included in the study. The PH-FRAT risk score ranges from 5 to 20 with a score > 14 indicating fallers and ≤ 14 non-fallers. The predictive performance of PH-FRAT was determined using metrics including area under receiver operating characteristics curve (AUROC), sensitivity, specificity, sensitivityEvent Rate(ER) and specificityER. Results: A total of 27,696 falls were reported over 3,689,561 resident days (a crude incident rate of 7.5 falls /1000 resident days). A total of 38,931 PH-FRAT assessments were conducted with a median of 4 assessments per resident, a median of 43.8 days between assessments, and an overall median fall risk score of 14. Residents with multiple assessments had increased risk scores over time. The baseline PH-FRAT demonstrated a low AUROC of 0.57, sensitivity of 26.0% (sensitivityER 33.6%) and specificity of 88.8% (specificityER 82.0%). The follow-up PH-FRAT assessments increased sensitivityER values although the specificityER decreased. The performance of PH-FRAT improved using a lower risk score cut-off of 10 with AUROC of 0.61, sensitivity of 67.5% (sensitivityER 74.4%) and specificity of 55.2% (specificityER 45.6%). Conclusions: Although PH-FRAT is frequently used in RACFs, it demonstrated poor predictive performance raising concerns about its value. Introducing a lower PH-FRAT cut-off score of 10 marginally enhanced its predictive performance. Future research should focus on understanding the feasibility and accuracy of dynamic fall risk predictive tools, which may serve to better identify residents at risk of falls

    The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data : a systematic review

    Get PDF
    Background: Falls in older adults remain a pressing health concern. With advancements in data analytics and increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now possible. We aimed to systematically identify studies involving the development and implementation of predictive falls models which used routinely collected electronic health record data in home-based, community and residential aged care settings. Methods: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk modelling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised and reported narratively. Results: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies had been validated externally. Three studies reported on the performance of the models. Conclusions: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. The increased availability of electronic health record data and the potential of predictive modelling to document fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic prediction model that reflects the changing status of an aged care client is key to this moving forward for fall prevention interventions

    Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Get PDF
    SummaryAdipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes

    A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program.</p> <p>Methods/Design</p> <p>The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects.</p> <p>Discussion</p> <p>This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life.</p

    Identification of an Amphipathic Helix Important for the Formation of Ectopic Septin Spirals and Axial Budding in Yeast Axial Landmark Protein Bud3p

    Get PDF
    Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is thought to act as a component of a spatial landmark. However, it is not clear how Bud3p interacts with other components of the landmark, such as the septins, to control axial budding. Here, we report that overexpression of Bud3p causes the formation of small septin rings (∼1 µm in diameter) and arcs aside from previously reported spiral-like septin structures. Bud3p closely associates with the septins in vivo as Bud3p colocalizes with these aberrant septin structures and forms a complex with two septins, Cdc10p and Cdc11p. The interaction of Bud3p with the septins may involve multiple regions of Bud3p including 1–858, 850–1220, and 1221–1636 a.a. since they all target to the bud neck but exhibit different effects on septin organization when overexpressed. In addition, our study reveals that the axial budding function of Bud3p is mediated by the N-terminal region 1–858. This region shares an amphipathic helix (850–858) crucial for bud neck targeting with the middle portion 850–1103 involved in the formation of ectopic septin spirals and rings. Interestingly, the Dbl-homology domain located in 1–858 is dispensable for axial bud-site selection. Our findings suggest that multiple regions of Bud3p ensure efficient targeting of Bud3p to the bud neck in the assembly of the axial landmark and distinct domains of Bud3p are involved in axial bud-site selection and other cellular processes

    Effects of Cognitive Behavioral Therapy on Daily Living Skills in Children with High-Functioning Autism and Concurrent Anxiety Disorders

    Get PDF
    CBT is a promising treatment for children with autism spectrum disorders (ASD) and focuses, in part, on children’s independence and self-help skills. In a trial of CBT for anxiety in ASD (Wood et al. in J Child Psychol Psychiatry 50:224–234, 2009), children’s daily living skills and related parental intrusiveness were assessed. Forty children with ASD (7–11 years) and their primary caregiver were randomly assigned to an immediate treatment (IT; n = 17) or 3-month waitlist (WL; n = 23) condition. In comparison to WL, IT parents reported increases in children’s total and personal daily living skills, and reduced involvement in their children’s private daily routines. Reductions correlated with reduced anxiety severity. These results provide preliminary evidence that CBT may yield increased independence and daily living skills among children with ASD

    Endemic Venezuelan Equine Encephalitis in Northern Peru

    Get PDF
    Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin

    Aβ42 Mutants with Different Aggregation Profiles Induce Distinct Pathologies in Drosophila

    Get PDF
    Aggregation of the amyloid-β-42 (Aβ42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Aβ aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Aβ can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Aβ42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Aβ42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Aβ42Arc) and an artificial mutation (Aβ42art) that is known to suppress aggregation and toxicity of Aβ42 in vitro. In the Drosophila brain, Aβ42Arc formed more oligomers and deposits than did wild type Aβ42, while Aβ42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Aβ peptides. Surprisingly, however, Aβ42art caused earlier onset of memory defects than Aβ42. More remarkably, each Aβ induced qualitatively different pathologies. Aβ42Arc caused greater neuron loss than did Aβ42, while Aβ42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Aβ aggregates: Aβ42Arc formed large deposits in the cell body, Aβ42art accumulated preferentially in the neurites, while Aβ42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Aβ42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo
    corecore