120 research outputs found

    Metabolic characterization of the natural progression of chronic hepatitis B

    Get PDF
    Background: Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection-immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases-remains unexplored. Methods: To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. Results: Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate-NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. Conclusions: The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate-NADH shuttle

    Association of Altered Plasma Lipidome with Disease Severity in COVID-19 Patients

    Get PDF
    The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (&gt;30 immune markers). This is the third publication in a series, and it reports the results of comprehensive lipidome profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the ward. Patients in the ICU showed 1.3–57-fold increases in ceramides, (lyso-)glycerophospholipids, diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3–2-fold lower levels of a cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically, phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated (PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q &lt; 0.05. Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30–62%; 93 decreased by 1.3–2.8-fold). Overall, these findings support and expand on early reports that dysregulated lipid metabolism is involved in COVID-19.</p

    Genetics and Not Shared Environment Explains Familial Resemblance in Adult Metabolomics Data

    Get PDF
    Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term 'metabolomics' refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented

    Heritability of Urinary Amines, Organic Acids, and Steroid Hormones in Children

    Get PDF
    Variation in metabolite levels reflects individual differences in genetic and environmental factors. Here, we investigated the role of these factors in urinary metabolomics data in children. We examined the effects of sex and age on 86 metabolites, as measured on three metabolomics platforms that target amines, organic acids, and steroid hormones. Next, we estimated their heritability in a twin cohort of 1300 twins (age range: 5.7-12.9 years). We observed associations between age and 50 metabolites and between sex and 21 metabolites. The monozygotic (MZ) and dizygotic (DZ) correlations for the urinary metabolites indicated a role for non-additive genetic factors for 50 amines, 13 organic acids, and 6 steroids. The average broad-sense heritability for these amines, organic acids, and steroids was 0.49 (range: 0.25-0.64), 0.50 (range: 0.33-0.62), and 0.64 (range: 0.43-0.81), respectively. For 6 amines, 7 organic acids, and 4 steroids the twin correlations indicated a role for shared environmental factors and the average narrow-sense heritability was 0.50 (range: 0.37-0.68), 0.50 (range; 0.23-0.61), and 0.47 (range: 0.32-0.70) for these amines, organic acids, and steroids. We conclude that urinary metabolites in children have substantial heritability, with similar estimates for amines and organic acids, and higher estimates for steroid hormones

    A sample preparation method for the simultaneous profiling of signaling lipids and polar metabolites in small quantities of muscle tissues from a mouse model for sarcopenia

    Get PDF
    The metabolic profiling of a wide range of chemical classes relevant to understanding sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small muscles, or muscle biopsies, is desired. Several existing metabolomics platforms that include diverse classes of signaling lipids, energy metabolites, and amino acids and amines would be informative for suspected biochemical pathways involved in sarcopenia. The sample limitation requires an optimized sample preparation method with minimal losses during isolation and handling and maximal accuracy and reproducibility. Here, two developed sample preparation methods, BuOH-MTBE-Water (BMW) and BuOH-MTBE-More-Water (BMMW), were evaluated and compared with previously reported methods, Bligh-Dyer (BD) and BuOH-MTBE-Citrate (BMC), for their suitability for these classes. The most optimal extraction was found to be the BMMW method, with the highest extraction recovery of 63% for the signaling lipids and 81% for polar metabolites, and an acceptable matrix effect (close to 1.0) for all metabolites of interest. The BMMW method was applied on muscle tissues as small as 5 mg (dry weight) from the well-characterized, prematurely aging, DNA repair-deficient Ercc1 Delta/-mouse mutant exhibiting multiple-morbidities, including sarcopenia. We successfully detected 109 lipids and 62 polar targeted metabolites. We further investigated whether fast muscle tissue isolation is necessary for mouse sarcopenia studies. A muscle isolation procedure involving 15 min at room temperature revealed a subset of metabolites to be unstable; hence, fast sample isolation is critical, especially for more oxidative muscles. Therefore, BMMW and fast muscle tissue isolation are recommended for future sarcopenia studies. This research provides a sensitive sample preparation method for the simultaneous extraction of non-polar and polar metabolites from limited amounts of muscle tissue, supplies a stable mouse muscle tissue collection method, and methodologically supports future metabolomic mechanistic studies of sarcopenia.Analytical BioScience

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2 Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2 Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes

    Urinary amine and organic acid metabolites evaluated as markers for childhood aggression : the ACTION biomarker study

    Get PDF
    Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (beta = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (beta = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression

    Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers

    Get PDF
    COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2–4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2–5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation

    Persistent metabolic changes in HIV-infected patients during the first year of combination antiretroviral therapy

    Get PDF
    The HIV-human metabolic relationship is a complex interaction convoluted even more by antiretroviral therapy (cART) and comorbidities. The ability of cART to undo the HIV induced metabolic dysregulation is unclear and under-investigated. Using targeted metabolomics and multiplex immune biomarker analysis, we characterized plasma samples obtained from 18 untreated HIV-1-infected adult patients and compared these to a non-HIV infected (n = 23) control population. The biogenic amine perturbations during an untreated HIV infection implicated altered tryptophan- nitrogen- and muscle metabolism. Furthermore, the lipid profiles of untreated patients were also significantly altered compared to controls. In untreated HIV infection, the sphingomyelins and phospholipids correlated negatively to markers of infection IP-10 and sIL-2R whereas a strong association was found between triglycerides and MCP-1. In a second cohort, we characterized plasma samples obtained from 28 HIV-1-infected adult patients before and 12 months after the start of cART, to investigate the immune-metabolic changes associated with cART. The identified altered immune-metabolic pathways of an untreated HIV infection showed minimal change after 12 months of cART. In conclusion, 12 months of cART impacts only mildly on the metabolic dysregulation underlying an untreated HIV infection and provide insights into the comorbidities present in virally suppressed HIV patients
    • …
    corecore