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Biomarkers are of interest as potential diagnostic and predictive instruments in

personalized medicine. We present the first urinary metabolomics biomarker study of

childhood aggression. We aim to examine the association of urinary metabolites and

neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a

large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average

age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling

gene-environment interplay to inform Treatment and InterventiON strategies), in which

we developed a standardized protocol for large-scale collection of urine samples in

children. Our analytical design consisted of three phases: a discovery phase in twins

scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant

for aggression (N = 378); and a validation phase in clinical cases and matched twin

controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated

with childhood aggression, of which the association of O-phosphoserine (β = 0.36;

SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (β = 0.32; SE = 0.09;

p = 0.01) remained significant after multiple testing. Although non-significant, the

directions of effect were congruent between the discovery and replication analyses for six

biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed

between low and high aggressive twins. In the validation analyses, the top biomarkers

and neurotransmitter ratios, with congruent directions of effect, showed no significant

associations with childhood aggression. We find suggestive evidence for associations
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of childhood aggression with metabolic dysregulation of neurotransmission, oxidative

stress, and energy metabolism. Although replication is required, our findings provide

starting points to investigate causal and pleiotropic effects of these dysregulations on

childhood aggression.

Keywords: metabolomics, childhood aggression, biomarkers, amines, organic acids, metabolites,

neurotransmitters, oxidative stress

INTRODUCTION

Biomarkers are of interest in etiological research, or as
applications in clinical practice as either diagnostic or predictive
instruments in personalizedmedicine (1). In general, a biomarker
is a measurable characteristic that can serve as an indicator of
the presence or absence of a trait or disorder, as an indicator
of severity, or to distinguish subgroups (2). Biomarkers can
be molecules, genes, or characteristics from invasively or non-
invasively collected biomaterials, for example blood or urine,
and may also include measures of some biological state like
neuroimaging or resting heart rate (2). This paper focuses on
childhood aggressive behavior and addresses the question to
what extent variation in aggressive behavior is associated with
biomarkers assessed in urine, which is a tissue that can be
obtained non-invasively. Aggressive behavior is common in
children and shows considerable individual variation, with more
pathological levels of aggression thought to be at the extreme
end of a continuous phenotype (3). Because of the large impact
of aggression problems on children, their families, teachers, and
their broader environment, there is a substantial interest in
studying aggression from a wide range of disciplines, including
genome, biomarker, and exposome research (4).

Aggression can be defined as a behavior that intends to
cause physical or emotional harm to others (5, 6). Odintsova
et al. (7) summarized all reviews of genetic studies in human
aggression, including an overview of “What is considered to be
aggression?” They indicated that the definitions of aggression
vary considerably, ranging from broadly-defined externalizing
and antisocial behaviors, including rule-breaking behavior, to
narrow definitions of chronic physical aggression. The broader
definitions entail a range of behaviors, which are expressed
differently with age (8, 9). For example, physical aggression peaks
in early childhood around 42 months (10, 11), while relational
aggression increases during adolescence (12). Decreases in
specific types of aggression can reflect actual cessation from
aggression, while sometimes a transition is made to types
of aggression which are more cognitively demanding, for
example, from physical aggression into relational aggression (13).
Aggression rarely occurs in isolation, and aggressive children
often experience co-occurring behavioral and social problems
(14, 15).

A review of the biochemical biomarker literature on
aggressive behavior indicated a possible role of inflammation,
neurotransmitters, lipoproteins, and several classes of
hormones (16). Particularly, research has focused on the
role of neurotransmitter pathways in aggressive behavior.

In general, it has been hypothesized that the dopaminergic
system is involved in the initiation of aggressive behavior, the
serotonergic system regulates the inhibition of aggression, while
the appraisal of aggression-related cues is controlled by the
gamma-aminobutyric acid (GABA) system (17). Most biomarker
studies of aggression have been done in adults, and much of
the biochemical biomarker research is on a limited range of
biomarkers (16). As a consequence, it is often unknown whether
changes in selected biomarkers reflect accurate representations
of their putatively associated biological pathways or systems.

Recent advances in high-throughput technologies have
enabled the transition to more holistic approaches in biomarker
discovery in the form of metabolomics (18). Metabolomics
allow for the measurement of a large number of metabolites,
which are small molecular intermediates and products of
metabolism, such as amino acids, lipids, sugars, and nucleic
acids (19). Metabolomics profiles represent a functional read-
out of the physiological state of the human body (20, 21).
With the complex and heterogeneous nature of aggression, the
combination of multiple biomarkers through metabolomics, as
compared with single biomarkers, may reflect its etiology more
comprehensively, and provide further insight into underlying
biological processes (22, 23). Metabolomics approaches may
identify more informative markers, while knowledge from single
biomarker studies can guide the selection of pathways most
relevant to aggression (16). Two classes of compounds that are
likely to be important in the study of aggression are organic
acids, which play vital roles in critical metabolic pathways
and neurotransmitter turnover (24), and biogenic amines.
Neurotransmitters like serotonin, dopamine, norepinephrine,
epinephrine, and histamine are all biogenic amines (25).

Here we present the first results from a large study on the
association of childhood aggression with urinary amines, and
organic acids in school-aged children (average age 9.7 years).
The study is part the ACTION project [Aggression in Children:
Unraveling gene-environment interplay to inform Treatment
and InterventiON strategies; (4, 14)]. ACTION is a large
collaborative endeavor which includes genome-wide genetic
and epigenetic association studies, biomarker discovery, and
epidemiological projects into the antecedents, characteristics,
and consequences of childhood aggression. We describe the
biomarker component of the ACTION project with a focus on
metabolomics. ACTION has collected data for twometabolomics
platforms, targeting amines and organic acids, as well as
some other biomarkers of larger molecular weight: creatinine
(indicator of renal health), neopterin (infectionmarker), oxidized
DNA/RNA (oxidative stressmarker), the neuropeptide Substance
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P, and C-peptide (indicator of insulin production). Participants
were recruited from the Netherlands Twin Register (NTR; N
= 1,349) and from an academic center for child and youth
psychiatry in the Netherlands (Curium-LUMC, Oegstgeest; N
= 183). We developed a standardized protocol for the large-
scale collection of urine samples in children, which has been
made available to the scientific community (http://www.action-
euproject.eu/content/data-protocols).

The two aims of this paper were to examine whether
concentrations of urinary metabolites and some larger, selected,
biomarker differed between children scoring low and high on
aggressive behavior and to see if we could validate the role of
neurotransmitter pathways in childhood aggression. Therefore,
we applied an analytical design consisting of three phases,
each conducted in independent samples. First, the discovery
phase assessed if aggression status was associated with urinary
biomarkers levels in a sample of twins concordant for high or
low aggression. Second, in the replication phase, the levels of
the top 25% most strongly associated biomarkers were compared
within twin pairs discordant for aggression, i.e., pairs selected
in which one twin scored high and the co-twin scored low.
Third, in the validation phase we assessed the top biomarkers for
childhood aggression in a sample of aggressive clinical cases and
low scoring twins (controls). The second aim of this paper was
to examine whether we could validate the role of serotonergic,
dopaminergic, and GABAergic neurotransmitter pathways in
aggressive behavior for children. To do so, we used ratios of
metabolites involved in neurotransmitter anabolism (synthesis)
and catabolism (degradation) in the same analytical design as
described above. A series of follow-up analyses was done in which
case-control status was defined at the level of the individual items.
We used the same analytical design, with a discovery, replication,
and validation step.

MATERIALS AND METHODS

Study Population and Procedures
Twin Cohort
Twins from the longitudinal Netherlands Twin Register [NTR;
(26, 27)] were invited for participation in the biomarker study
based on their longitudinal data on aggressive behavior at ages
3, 7, and/or 9/10 years. At, or around these ages, parents of
twins received surveys that included the Dutch version of the
Achenbach System of Empirically Based Assessment (ASEBA)
Child Behavior Checklist (CBCL) for pre-school children (1.5–
5 years) or school-aged children [6–18 years; (28)]. Maternal
data were always collected, paternal ratings are missing for
some birth cohorts due to financial constraints. At ages 7 and
9/10, teachers of twins also received surveys that included the
Dutch version of the ASEBA Teacher Rating Form [TRF; (28)]
after parents consented to approach the teachers and provided
contact information. Twin pairs were invited for participation in
the biomarker study based on concordance or discordance for
aggressive behavior rated by either themother (93%) or teacher(s;
7%) on the Aggressive Behavior subscale of the CBCL/TRF,
with an intentional oversampling of monozygotic (MZ) pairs.
The design included twins from high-high and low-low scoring

concordant pairs, and twins from discordant high-low pairs
(81% MZ pairs). NTR defined age- and sex-specific Aggressive
Behavior T-scores by multiplying a z-score by 10 and adding 50.
High-scoring children had T-scores ≥ 65. Low-scoring children
had sum scores lower than five. We selected high-high, low-
low, and high-low pairs based on these criteria and additionally
matched low-low pairs to the other pairs based on postal code. In
the last phase of recruitment, an age-specific sum score defined
high-scoring children based on mother ratings as: age 3≥ 13, age
7 ≥ 5, and age 10 ≥ 4.

Prior to biological sample collection in the twin cohort, a
feasibility study established achievability of urine collection and
storage in the home context. Parents collected first-morning
urine samples (see Supplementary Text 1 for description of
buccal cell collection). Urine samples were stored at home and
transported by researchers to the lab at −18 degrees Celsius.
In the lab, urine samples were stored at −80◦C until further
processing. All parents provided written informed consent for
their children’s participation. At the time of sample collection,
they answered a set of questions about the precise dates and times
of urine collection, their children’s general health, and current
medication use. Parents also completed the CBCL, of which the
Aggressive Behavior subscale was used to measure the twins’
aggressive behavior at the time of urine collection.

From December 2014 to May 2017, 3,304 twins were invited
with 1,367 twins (41.4%) agreeing to take part. The invited group
comes from the larger Netherlands Twin Register. Heritability
estimates of aggression were calculated from CBCL Aggression
scores of the entire twin sample from which the twins who were
invited into the biomarker study were drawn. The ACTION-
biomarker project included 1,362 twins with first-morning urine
(Supplementary Table 1). Twins were excluded if the collected
urine was not the first-morning urine (e.g., parent-reported time
of urine collection was after 12:00 in the afternoon; N = 13) or
if the urine sample was too small to analyze both metabolomics
platforms and all biomarkers (N = 2). This resulted in a total
of 1,347 urine samples (673 complete twin pairs) in which
analyses were performed. Study approval was obtained from
the Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Center, Amsterdam (NTR
25th of May 2007 and ACTION 2014.252), an Institutional
Review Board certified by the U.S. Office of Human Research
Protections (IRB number IRB00002991 under Federal-wide
Assurance- FWA00017598; IRB/institute codes).

Clinical Cohort
Six- to 13-years-old children were recruited who were referred
to an academic center for child and youth psychiatry in the
Netherlands (Curium-LUMC) between February 2016 and June
2018. This center provides inpatient and outpatient treatment
programs and treats children with severe and complex mental
health problems who are in need of intensive care. As part of a
standardized clinical assessment, parents completed the Dutch
version of the CBCL (28), of which the Aggressive Behavior
subscale was used as an index of aggression. These data were
made available to the authors for the purpose of the present
study. Specifically, parents were approached in the context of
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an ongoing biobank protocol approved by the ethics board
of Leiden University Medical Center. For children for whom
parents agreed to participate, biomaterials (buccal cells and
urine) and physical measures (height, weight, resting heart rate)
were also collected. Collection of biomaterials was identical to the
twin sample’s procedure. In total, 809 parents and children were
invited to participate in the study, of which 189 (23.4%) agreed to
participate (including eight sibling pairs and sibling trio). Several
children refused to participate during urine collection (N = 3) or
donated urine in the afternoon (N = 2). One child was excluded
as this child and its co-twin were also included as part of the
twin cohort. This resulted in a total of 183 clinical cases with
urine samples available. Information on psychiatric disorders in
the clinical sample is available in Supplementary Table 2.

For the 183 clinic-referred children who donated morning
urine (mean age = 10.2 years, SD age = 1.8; 25.7% female), 180
children had CBCL parent reports available and 164 children also
had TRF teacher reports. ASEBA questionnaires were completed
a maximum of 6 months before or after urine collection. All
clinic-referred children were considered aggressive cases in our
design, which was confirmed by the ASEBA sex-specific norm
scores. Specifically, the clinical sample displayed subclinical levels
of parent-rated CBCL aggression with average T-scores of M
= 66.08 (SD = 11.13), with T ≥ 65 conferring to subclinical
levels of aggression, and T ≥ 70 to clinical levels of aggression.
Teacher-reported aggression was substantially elevated in the
clinical sample with an average T-score of M = 60.45 (SD =

8.19), with a score of T = 60 referring to one standard deviation
elevation above the sample mean.

Biomarker Measurement
Biomarker Quantification

Dipstick
A dipstick (Siemens, Marburg, Germany) was used to screen for
infections in urine and to measure leukocytes, nitrite, proteins,
glucose, and blood presence in the urine. The dipstick was applied
to the first thaw of the urine samples either by dipping in the
residual urine volume after aliquoting or by dropping urine on
the dipstick. No children had to be excluded.

Density
Density of urine was measured using the Atago R© refractometer
PAL-10S BLT/A+W (Atago, Tokyo, Japan). The refractive index
is a ratio of the velocity of light in air to the velocity of light
in solution, which is directly proportional to the number of
dissolved solids in urine.

Creatinine
Creatinine was measured using a colorimetric assay kit according
to manufacturer’s instructions (Cayman, Ann Harbor, MI, USA).
Creatinine values are reported in µmol/L.

Neopterin
Neopterin is a peptide which responds to damage and infection,
especially to tissue damage and viral infection. Neopterin was
measured using a competitive ELISA according tomanufacturer’s

instructions (IBL International GmbH, Munich, Germany)
Neopterin levels are reported in nmol/L.

Oxidized DNA/RNA
DNA and RNA are damaged by oxidation, with guanine as
most prone to oxidation. Using a competitive ELISA (Cayman,
Ann Harbor, MI, USA), different oxidized guanine species were
measured in urine including 8-hydroxyguanosine, 8-hydroxy-2’-
deoxyguanosine, and 8-hydroxyguanine. We used these oxidized
guanine species as marker for oxidized DNA and RNA. Oxidized
DNA/RNA levels are reported in pg/ml.

C-peptide
Insulin is synthesized in the pancreatic beta cells as proinsulin.
Proinsulin is cleaved enzymatically, releasing insulin and its
byproduct C-peptide. C-peptide was measured using an ELISA
according to manufacturer’s instructions (IBL International
GmbH, Munich, Germany) and was used as a marker of insulin
in urine. C-peptide levels are reported in ng/ml.

Substance P
The peptide neurotransmitter substance P was measured in
urine using competitive ELISA according to manufacturer’s
instructions (Cayman, AnnHarbor, MI, USA). Substance P levels
are reported in pg/ml.

Metabolite Quantification

LC-MS amines platform
The amine metabolites were measured using ultra-performance
liquid chromatography tandem mass spectrometry (UPLC-
MS/MS) employing an Accq-Tag derivatization strategy adapted
from the protocol supplied by Waters. Sample preparation
consisted of protein precipitation by the addition of methanol
to 5 µL of urine spiked with internal standards. The centrifuged
supernatant was then evaporated using a speedvac prior to
reconstitution in borate buffer (pH 8.5) with AQC reagent.
Chromatic separation was done on an Accq-Tag Ultra column
(Waters Chromatography B.V., Etten – Leur, The Netherlands)
using a UPLC Agilent Infinity II (1290 Multisampler, 1290
Multicolumn Thermostat and 1290 High Speed Pump; Agilent
Technologies, Waldbronn, Germany) coupled to an AB SCIEX
quadrupole-ion trap (QTRAP; AB Sciex, Massachusetts, USA).
Analytes were detected in the positive ion mode and monitored
in Multiple Reaction Monitoring (MRM) using nominal mass
resolution. The amine method has been described in detail
elsewhere (29). Metabolites are reported as ‘relative response
ratios’ (target area/area of internal standard) after quality control
(QC) correction.

GC-MS organic acids platform
The organic acid metabolites were measured using gas
chromatography mass spectrometry (GC-MS). Sample
preparation of 50 µL of urine spiked with internal standards
consisted of liquid-liquid extraction with ethyl acetate to
extract the organic acids and remove urea present in the
urine. After collecting the organic phase, the samples were
evaporated to dryness using a speedvac. Then, two-step
derivatization procedures were performed on-line: oximation

Frontiers in Psychiatry | www.frontiersin.org 4 March 2020 | Volume 11 | Article 165

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Hagenbeek et al. Aggression Metabolomics

using methoxyamine hydrochloride (MeOX, 15 mg/mL in
pyridine) as first reaction and silylation using N-Methyl-N-
(trimethylsilyl)- trifluoroacetamide (MSTFA) as second reaction.
Chromatic separation using helium as carrier gas (1,7 mL/min)
was performed on a 30 × 0.25m ID column with a film
thickness of 25m (HP-5MS UI). The mass spectrometer (Agilent
Technologies, Waldbronn, Germany) with a single quadrupole
using electron impact ionization (70 eV) was operated in SCAN
mode (mass range 50–500). Metabolites are reported as “relative
response ratios” (target area/area of internal standard) after QC
corrections. The acceptance criteria for metabolite reporting
was a relative standard deviation (RSD) of the QCs (RSDqC) of
<15% and background signal <20%, metabolites with RSDqc
values of 15–30% should be interpreted with caution.

Metabolomics measurement protocol
In order to minimize the analytical error in the data, a number
of measures were taken. A QC sample was created by pooling
aliquots from all urine samples. Randomization of the subjects
was done in such a manner that low and high aggression
subjects, and therefore twin and clinical samples were randomly
distributed across batches. Twin pairs were included in the
same batch. Samples were run in 20 batches which included a
calibration line, QC samples, sample replicates and blanks. QC
samples were analyzed every 10 samples, and used to assess
data quality and to correct for instrument response. Blank
samples were used to determine if there was any interference
from background signal. In-house developed algorithms were
applied using the pooled QC samples to compensate for shifts
in the sensitivity of the mass spectrometer over the batches.
The performance and reproducibility of individual metabolites
were evaluated with the RSDqc. The acceptance criteria for
metabolite reporting was RSDqc <15% and background signal
<20%, metabolites with RSDqc of 15–30% should be interpreted
with caution.

Data Pre-processing for Analysis
Preprocessing of the metabolomics data was done for each
platform. To avoid the exclusion of potentially relevant
metabolites and to avoid including metabolites with very poor
RSDqc values, metabolites with a RSDqc value of >20% were
removed (RSDqc values are given in Supplementary Table 3).
Metabolite measurements that fell below the limit of
detection/quantification were imputed with half of the value of
this limit, or when this limit was unknown with half of the lowest
observed level for this metabolite (the number of imputed values
per metabolite have been included in Supplementary Table 3).
Urine volume fluctuates among individuals and throughout
the day; therefore, correction for dilution in urinary metabolite
concentrations is essential. It is common practice to normalize to
urinary creatinine output to correct for dilution differences (30).
However, creatinine was associated with childhood aggression
(unpublished pilot study), therefore, normalization to creatinine
levels would bias our results. Instead we applied an adjusted
variant of density normalization. The density reflects the dilution
of the urine sample and thus can be used to account for hydration
state of the subject. In a healthy representative population, one

can account for hydration state by dividing the metabolite
concentrations by (di–dw), where di is the density of sample i
and dw = 1 the density of pure water. In this study, we took the
data from the control group to construct the linear models that
predict the concentration of each metabolite from the density
measure. The density effect size βm for each metabolitem is then
used as a scaling factor in the density normalization for the entire
population as follows:

[mi]
′ = [mi]/(βm

∗(di − dw)),

where [mi] denotes the measured concentration of metabolite
m in sample i and [mi]’ the corrected concentration. For
convenience, densities and concentrations are expressed as a
percentage of their median. The regression parameters are all
listed in Supplementary Table 3. In generating the models, we
imputed data points that deviated more than 2.5 SDs from
the mean by the mean metabolite or biomarker concentration.
After normalization we verified if the effect of density on
[mi]’ disappeared as one would expect. This was indeed the
case by considering data points within 3 SDs from the mean
for each metabolite, c.f. Supplementary Table 3. Finally, the
metabolites and biomarkers were transformed by inverse normal
rank transformation (31, 32).

To get an indication of the metabolic functioning of
serotonergic, dopaminergic, and GABAergic neurotransmitter
pathways, ratios were calculated between metabolites which
have been associated with these pathways. Specifically,
we targeted serotonergic, dopaminergic, and GABAergic
anabolism (synthesis) and catabolism (degradation).
Serotonergic anabolism was represented by the ratios of L-
tryptophan to 5-hydroxy-L-tryptophan (5HTP) and 5HTP
to serotonin. Dopaminergic anabolism was assessed with
the ratio of L-phenylalanine to L-tyrosine, while the ratio
of 3-methoxytyramine (3MT) to homovanillic acid (HVA)
represented dopamine catabolism. The ratios of L-glutamine
to L-glutamic acid and L-glutamic acid to GABA represented
GABA synthesis and GABA to succinic acid GABA degradation.

Statistical Analyses
Because twins were selected for the biomarker study on the
basis of prior longitudinal data, it was important to assess
whether these group differences in aggression were still present
at the time of urine collection. Generalized estimation equation
(GEE) models tested whether twins selected for high or low
aggression and clinical cases and twin controls differed in
aggressive behavior at the time of urine collection (see Main
analyses for details on GEE analyses). Similarly, a paired sample
t-test was used to assess differences within twin pairs discordant
for aggression (i.e., high co-twin vs. low co-twin). All analyses
were carried out in the R programming language [version
3.6.0; (33)]. For the entire NTR group (1,502 MZ twins and
2,298 DZ twins), from which the ACTION-biomarker subsample
was drawn, we analyzed the CBCL aggression scores with
genetic structural equation modeling (34, 35) to obtain estimates
of heritability, influences of shared (common), and unshared
(unique) environmental factors.
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Analytical Design
We employed a three-step analytical strategy, with independent
samples included in each step: (1) discovery in between-
family analyses; (2) replication in within-family analyses; and
(3) validation in clinically referred aggression cases and twin
controls. In the discovery phase we explored the differences
between high and low concordant twin pairs in biomarkers
levels and neurotransmitter ratios in between-family analyses
with GEE models. The within-family replication analyses were
performed for the top 25% most strongly associated biomarkers
or ratios from the discovery phase. In the within-family analyses
we compared the biomarker levels and neurotransmitter ratios
of the low and high scoring twin of discordant twin pairs.
Finally, for the biomarkers or ratios that differed consistently
for aggression status in the discovery and replication phase we
performed validation analyses to compare the levels of these
biomarkers or the neurotransmitter ratios between clinical cases
and controls.

Sensitivity analyses were performed to assess the impact of
confounders (preexisting chronic conditions, medication use,
and vitamin supplementation) on the results. After removal of
individuals scoring positive on these potential confounders, we
repeated the within-family analyses, for the biomarkers and ratios
included in the replication phase of the analytical strategy.

Main Analyses
The between-family discovery analyses included the twins
scoring high or low on aggression. To investigate the first aim of
the study, the relation of amines, organic acids, and biomarkers
with childhood aggression, GEE analyses were performed to
model the relationship between biomarkers (outcomes) and
aggression status (predictors), with sex and age at urine collection
as covariates. The second aim of this study, to investigate the
contribution of neurotransmitter pathways (i.e., serotonergic,
dopaminergic, and GABAergic) to aggression, was explored
through identical GEE models, except with neurotransmitter
ratios as outcomes. Aggression case-control status was the
predictor in all analyses. GEE uses a sandwich or robust variance
estimator that adjusts the standard errors to correct for clustering
in the data (36). In our analyses the clustering in the data is
due to relatedness of participants (i.e., twins within families), to
correct for this we used the “exchangeable” correlation structure
option in GEE. To correct for multiple testing (p.adjust function
in R) we used the False Discovery Rate [FDR; (37)] of 5% for 89
(biomarkers) or 7 (ratios) tests, the significance threshold was set
at p ≤ 0.05.

The within-family replication analyses was done in twin pairs
that were discordant for aggression status (high-low) and tested
the top 25% most strongly associated biomarkers or ratios from
the between-family analyses. Biomarker concentrations or ratios
were corrected for the effects of sex and age at urine collection
by regressing out their effects. We then employed paired t-tests
to analyze the residuals of the regression analysis. The FDR of
5% for 23 (biomarkers) or 3 (ratios) tests was used to correct for
multiple testing, with the significance threshold at p ≤ 0.05.

The top fivemost strongly associated biomarkers and top ratio
were included in the validation analyses; these were required

to have the same direction of effect in both the discovery
and validation analyses. To assess if levels of the biomarkers
and ratio selected by the discovery and validation analyses
can differentiate between low and high aggressive children, we
performed replication analyses in clinical cases and twin controls
(92 twin pairs not previously included in the discovery between-
family analyses). As for the discovery analysis, we performed
GEE analyses to model the relationship of the biomarkers and
ratio with aggression status. Sex and age at urine collection were
included as covariates and we used to “exchangeable” correlation
structure to correct for relatedness in our sample and obtain
robust standard errors. For the biomarkers we used the FDR
of 5% for 5 tests to account for multiple testing, p ≤ 0.05 was
considered significant.

Sensitivity Analyses
Sensitivity analyses were done in the discordant monozygotic
twin pairs, and comprised of the biomarkers and the
neurotransmitter ratio included in the validation phase. These
analyses only included data from twins without a preexisting
chronic condition (N = 24 excluded), who were medication
(N = 48 excluded) or vitamin supplement (N = 67 excluded)
naive (see Supplementary Text 2 for more information). After
exclusions, we performed paired t-tests to re-evaluate the
differences in biomarker levels and the neurotransmitter ratio
between the aggressive and non-aggressive twins. The FDR of
5% for 15 (biomarkers) or 3 (ratios) tests was used to correct for
multiple testing, with the significance threshold at p ≤ 0.05.

Finally, we carried out sensitivity analyses on item level data
(see Supplementary Table 4). These sensitivity analyses entailed
association analyses of each metabolite, other biomarker of
neurotransmitter ratio with each item from the CBCL Aggressive
Behavior subscale (see Supplementary Text 3).

RESULTS

Participant and Aggression Description
The present study contains data from 1,530 children, including
twins and clinical cases, aged 9.7 years on average (range 5.6
to 13.4 years; SD = 1.8) of which 693 (45.3%) were females. In
total, we included 794 (51.9%) children scoring low on aggression
and 736 (48.1%) children with a high aggression score (Table 1).
Twin pairs were invited for participation based on longitudinal
data on childhood aggressive behavior (Supplementary Table 5

and Supplementary Text 4). We compared the CBCL aggression
scores, obtained at time of urine collection, to assess whether
differences in aggression between the high and low scoring twins
were still present at the time of urine collection. At the time of
urine collection, twins selected for high aggression indeed had
significantly higher CBCL aggression scores as compared to twins
selected for low aggression (β = 5.09; SE = 0.50; p = 1.83 ×

10−24). Similarly, when comparing the discordant twin pairs,
the high aggressive twins (M = 6.2, SD = 5.8) had significantly
higher aggression scores at the time of urine collection than their
low aggressive co-twins (M = 4.4, SD = 4.4; t(185) = 5.73, p
= 4.08 × 10−08). Finally, the clinical cases and low aggressive
twin controls, differed greatly in their levels of aggression (β =
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TABLE 1 | Participant characteristics of the twins (N = 1,347) and clinical cases (N = 183).

Twins Clinical cases

Concordant low Discordant Concordant high

n = 605 Low

(n = 189)

High

(n = 189)

n = 364 n = 183

N complete twin pairs 302 189 182 -

Mean (SD) age sample collection 9.4 (1.9) 10.1 (1.7) 9.5 (1.8) 10.2 (1.8)

Range age sample collection 5.6–12.6 6.1–12.7 5.8–12.9 6.3–13.4

N (%) MZ twins 469 (77.5%) 306 (81.0%) 330 (90.7%)

N (%) females 323 (53.4%) 85 (45.0%) 79 (41.8%) 159 (43.7%) 47 (25.7%)

CBCL mother (SD) aggression score 2.7 (3.8) 4.4 (4.4) 6.2 (5.8) 7.6 (6.0) 13.0 (7.6)

Current psychotropic medication use

Stimulants 10 (1.7%) 7 (3.7%) 13 (6.9%) 25 (7.0%) 46 (24.6%)

Analgesics 1 (0.2%) 1 (0.5%) 3 (1.6%) 1 (0.3%) 0 (0.0%)

Antipsychotics 1 (0.2%) 0 (0.0%) 1 (0.5%) 3 (0.8%) 36 (19.7%)

Hypnotics/sedatives 7 (1.2%) 1 (0.5%) 2 (1.1%) 6 (1.7%) 6 (3.3%)

CBCL, Child Behavior Checklist; MZ, monozygotic. The clinical cases CBCL scores include either mother of father-report (90% mother report).

10.19; SE= 0.74; p= 8.25× 10−43). The heritability of the CBCL
aggression scores as analyzed in our project was 0.63 (90% CI:
0.53–0.74). The proportion of variation explained by common
environment shared by twins growing up in the same family
was 0.14 (90% CI: 0.03–0.24) and the proportion of variation
explained by unique environment was 0.23 (90% CI: 0.21–0.25).

Association of Urinary Metabolites and
Other Biomarkers With Childhood
Aggression
Discovery Analyses
To determine the association of urinary amine, organic acid, and
biomarker levels with childhood aggression, we first performed
discovery analyses using a between-family design. The discovery
analyses were conducted using 421 low scoring and 364 high
scoring twins (average age = 9.4; SD = 1.8) and included
48.8% females and 84% MZ twins (Table 1). The discovery
analyses showed significant associations for 4 amines and two
other biomarkers with childhood aggression. We observed
positive associations of childhood aggression with creatinine
(β = 0.24; SE = 0.08; p = 0.003; FDR p = 0.08), oxidized
DNA/RNA (β = 0.19; SE = 0.09; p = 0.03; FDR p =

0.54), and L-methionine sulfoxide (β = 0.18; SE = 0.09; p =

0.04; FDR p = 0.57) and negative associations with gamma-
glutamylglutamine (β = −0.25; SE = 0.09; p = 0.004; FDR p
= 0.09; Supplementary Table 7). After correction for multiple
testing, the positive associations of O-phosphoserine (β = 0.36;
SE = 0.09; FDR p = 0.004), and gamma-L-glutamyl-L-alanine
(β = 0.32; SE = 0.09; FDR p = 0.01) remained significant
(Supplementary Table 6).

Replication Analyses
The top 25% most strongly associated amines (16), organic
acids (5), and biomarkers (2) from the discovery analysis were
examined in within-family analyses, conducted in 189 twin pairs
discordant for childhood aggression status (Table 1). There was
no replication of associations with childhood aggression of the

discovery phase, where 2 amines were significantly associated
after correction for multiple testing (Supplementary Table 7).
As compared to their low aggression co-twin, twins with high
aggression had significantly lower concentrations of L-aspartic
acid (mean difference = −0.24; t(188) = −2.46; p = 0.01),
norepinephrine (mean difference = −0.19; t(188) = −2.44; p =

0.02), L-tryptophan (mean difference = −0.17; t(188) = −2.40;
p = 0.02), ethanolamine (mean difference = −0.20; t(188) =
−2.20; p = 0.03), L-alpha-aminobutyric acid (mean difference
= −0.16; t(188) = −2.20; p = 0.03), and N6-N6-N6-trimethyl-
L-lysine (mean difference = −0.17; t(188) = −2.09; p = 0.04;
Supplementary Table 7). However, none of these associations
survived multiple testing (Supplementary Table 7). Overall, we
observed congruent directions of effect in the discovery and
validation analyses for 6 out of 23 (26.1%) top 25% amines,
organic acids and biomarkers (Figure 1).

Validation Analyses
To assess if biomarkers selected in the discovery and replication
analyses could differentiate between low and high aggressive
children from an independent sample, we analyzed data from 183
clinical cases and 184 controls (92 twin pairs concordant low for
childhood aggression). This validation sample included children
with an average age of 9.8 years (SD = 1.9), 39.8% females and
38.2% MZ twins. The analyses included the top 5 biomarkers
with congruent direction of effect in the discovery and validation
analyses: gamma-glutamylglutamine, L-arginine, glyceric acid,
creatinine, and succinic acid. None of the biomarkers were
significantly associated with childhood aggression in the
validation analyses (Table 2 and Supplementary Table 8). We
observed the same direction of effect in the validation analysis
for 3 (60%) biomarkers (Table 2).

Sensitivity Analyses
For the five biomarkers included in the validation analyses
we performed sensitivity analyses to assess if the mean
difference between high and low aggressive children changed
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FIGURE 1 | Association of the top 25% amines, organic acids and other

biomarkers with childhood aggression in the discovery and validation phases.

The between-family analyses in the discovery phase are based on gee models

for the 783 twins scoring low or high aggression. The within-family analyses in

the validation phase are based on paired t-tests among the 189 twin pairs

discordant for aggression. The whiskers denote the 95% confidence intervals

for the GEE betas or the mean differences. Single asterisk represents a

significant finding before correction for multiple testing at p ≤ 0.05, double

asterisks represent a significant finding after correction for multiple testing.

(A) The top 25% between-family results for the amines, organic acids and

other biomarkers in the discovery phase. Correction for multiple testing was

done with the False Discovery Rate (FDR) of 5% for 89 tests. (B) The top 25%

within-family results for the amines, organic acids and other biomarkers.

Correction for multiple testing was done with the FDR of 5% for 23 tests.

after excluding twins with potentially confounding characteristics
(preexisting chronic condition, currently on medication, or
on vitamin supplements). As compared to the within-family

analyses (Table 2), we observed no differences after exclusions
for preexisting chronic disorder, medication or vitamin use for
any of the biomarkers (Supplementary Table 9).

Item-based analyses found no significantly associated
metabolites or other biomarkers after correction for multiple
testing. Replication and validation analyses also found no
significant metabolites or other biomarkers per item after
correction for multiple testing (Supplementary Tables 13–
16). The complete results have been included in
Supplementary Text 3.

Association of Urinary Neurotransmitter
Pathways in Childhood Aggression
Discovery Analyses
To elucidate the role of serotonergic, dopaminergic,
and GABAergic neurotransmitter pathways in childhood
aggression we analyzed neurotransmitter ratios representing
anabolism (synthesis) and catabolism (degradation) of the key
neurotransmitters in these pathways. The discovery analyses
using a between-family design to assess the association of urinary
neurotransmitter ratios with childhood aggression found no
neurotransmitter ratios involved in the anabolism or catabolism
of serotonin, dopamine or GABA significantly associated with
childhood aggression (Supplementary Table 10).

Replication Analyses
Replication in the top 25% most strongly associated
neurotransmitter ratios (3) from the discovery analysis were done
in within-family analyses. The 3 top 25% neurotransmitter ratios
included the dopamine ratios 3MT:HVA and L-phenylalanine:L-
tyrosine and the serotonergic ratio 5HTP:serotonin. None of the
neurotransmitter ratios showed significant differences between
high and low aggressive twins (Supplementary Table 11).
We observed congruent directions of effect in the discovery
and replication analyses for 2 of the 3 (66.6%) top 25%
neurotransmitter ratios (Figure 2).

Validation Analyses
To assess if neurotransmitter ratios selected in the discovery and
replication analyses could differentiate between low and high
aggressive children we analyzed data from 183 clinical cases and
184 twin controls. The top neurotransmitter ratio with the same
direction of effect in the discovery and replication analyses was
3MT:HVA. The catabolic dopaminergic ratio 3MT:HVA was not
significantly associated with childhood aggression in a sample of
clinical cases and twin controls (B= 2.12; SE= 1.57; p= 0.18).

Sensitivity Analyses
We performed sensitivity analyses to assess if the mean difference
in the top neurotransmitter ratio between high and low
aggressive children changed after excluding participants with
potentially confounding characteristics. Excluding twins with a
preexisting chronic condition or who were on medication or
vitamin supplements, did not result in significant differences
between aggressive and non-aggressive twins for the 3MT:HVA
ratio (Supplementary Table 12).
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TABLE 2 | Results of the top five associated biomarkers as included in the replication analysis.

Platform Amines Amines Other Organic acids Organic acids

Metabolite Gamma-glutamylglutamine L-arginine Creatinine Glyceric acid Succinic acid

Discovery analysis N 783 783 785 783 783

B −0.25 −0.11 0.24 0.12 0.16

SE 0.09 0.08 0.08 0.09 0.09

p-value 0.004 0.193 0.003 0.193 0.060

FDR p-value 0.09 0.79 0.08 0.79 0.66

Replication analysis Mean difference −0.11 −0.09 0.08 0.09 0.02

df 188 188 188 188 188

T −1.80 −1.05 1.17 1.09 0.34

p-value 0.07 0.29 0.24 0.28 0.73

FDR p-value 0.21 0.42 0.40 0.42 0.79

Validation analysis N 367 367 367 367 367

B −0.17 0.12 0.16 0.09 −0.23

SE 0.14 0.11 0.12 0.12 0.13

p-value 0.25 0.27 0.16 0.42 0.07

FDR p-value 0.34 0.34 0.34 0.42 0.34

This table includes the results from the between-family discovery, the within-family validation and replication analyses for all 5 biomarkers. Discovery analyses were performed with

GEE for 783 twins with low or high aggression. The p-values in the discovery analysis have been adjusted for multiple testing using the FDR of 5% for 89 tests. Validation analyses

were performed with paired t-tests for 189 twin pairs discordant (high-low) on aggression status. The p-values in the validation analysis have been adjusted for multiple testing using

the FDR 5% for 23 tests. Replication analyses were performed with GEE for 183 clinical cases and 184 twin controls. The p-values in the replication analysis have been adjusted for

multiple testing using the FDR of 5% for 5 tests. All p ≤ 0.05 have been given in bold. Full model information of the discovery, validation and replication analyses have been included in

Supplementary Tables 6–8, respectively.

After correction for multiple testing none of the
neurotransmitter ratios were significantly associated to any of the
Aggressive Behavior items in the discovery analyses. Similarly,
replication and validation analyses also found that associations
of Aggressive Behavior items with neurotransmitter ratios did
not survive multiple testing (Supplementary Tables 17–20).
Supplementary Text 3 contains a complete description of
the results.

DISCUSSION

Discovery of biomarkers that would aid in the diagnostics and
treatment of childhood aggression could be of great benefit.
To illustrate, poorer adult outcomes have been reported for
later diagnosis, and thus treatment, of aggression (38). Here,
we describe the first urinary metabolomics study for childhood
aggression, conducted in a sample of 1,347 twins selected for
high or low aggression and a sample of 183 clinically- referred
children with high aggression. Our first aim was to identify
metabotypes for childhood aggression based on a total of 89
amines, organic acids, and other biomarkers of larger molecular
weight. The second aim was to validate the role of serotonergic,
dopaminergic, and GABAergic neurotransmitter pathways in
childhood aggression. Thus, we compared seven ratios of
metabolites reflecting neurotransmitter anabolism (synthesis)
and catabolism (degradation) between aggressive and non-
aggressive children.

Out of the 89 tested amines, organic acids, and other
biomarkers of larger molecular weight, we observed

significant associations for 4 amines (O-pshosposerine,
gamma-L-glutamyl-L-alanine, gamma-glutamylglutamine,
and methionine-sulfoxide) and 2 biomarkers (creatinine and
oxidized DNA/RNA) in the discovery stage before correction
for multiple testing. After correction for multiple testing,
only O-phosphoserine, and gamma-L-glutamyl-L-alanine
remained significantly associated. None of the organic acids
or neurotransmitter ratios were significantly associated with
childhood aggression. The replication phase included the top
25% most strongly associated amines, organic acids, other
biomarkers, and neurotransmitter ratios from the discovery
phase. The replication analyses revealed significant differences
between low and high aggressive twins for the levels of 6 amines
(L-aspartic acid, norepinephrine, L-tryptophan, ethanolamine,
L-alpha-aminobutyric acid, and N6-N6-N6-trimethyl-L-lysine).
These 6 amines were among the top 25% most strongly
associated traits in the discovery phase, but did not reach a
significance of FDR 5%. Consequently, validation was performed
on the top biomarkers (gamma-glutamylglutamine, L-arginine,
glyceric acid, creatinine, and succinic acid) and neurotransmitter
ratio (3MT:HVA), which had congruent directions of effect
in both the discovery and replication samples. The validation
analyses were conducted in an independent sample of aggressive
clinical cases and non-aggressive twin controls and did not
show any significant differences between groups. We compared
these results to those obtained when applying sample median
normalization of the metabolomics measurements and found
results to be highly similar (for correlations between the
beta’s obtained by both normalizations: Pearson’s r correlation
0.87, p= 1.89× 10−27).
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FIGURE 2 | Association of the top 25% neurotransmitter ratios with childhood

aggression in the discovery and validation phases. The between-family

analyses in the discovery phase are based on gee models for the 783 twins

scoring low or high aggression. The within-family analyses in the validation

phase are based on paired t-tests among the 189 twin pairs discordant for

aggression. The whiskers denote the 95% confidence intervals for the GEE

betas or the mean differences. The neurotransmitter ratios denote the

following: 3MT, 3-methoxytyramine; 5HTP, 5-hydroxy-L-tryptophan; HVA,

homovanillic acid. (A) The top 25% between-family results for the

neurotransmitter ratios in the discovery phase. Correction for multiple testing

was done with the False Discovery Rate (FDR) of 5% for 7 tests. (B) The top

25% within-family results for the neurotransmitter. Correction for multiple

testing was done with the FDR of 5% for 3 tests.

To assess if the heterogeneous nature of aggression prevented
us from finding robust biomarkers or neurotransmitters
associated with childhood aggression, all biomarkers and

neurotransmitter ratios were reanalyzed for their associationwith
endorsement of individual aggressive behavior questionnaire
items. While we found some evidence for biomarkers and
neurotransmitter ratios being differentially associated with
distinct aggressive behaviors, like threatens or argues, none of the
associations survived multiple testing.

Based on our findings for overall aggression and on the
current state of the art in the field of human studies on the
aetiology of aggression with respect to biomarkers, including
genetic factors, hormones, and metabolites, below, we address
three biochemical pathways and discuss their roles in aggression.

Serotonergic, Dopaminergic, and
GABAergic Pathways and Childhood
Aggression
It has been suggested that serotonergic, dopaminergic, and
GABAergic pathways play a role in aggression (17). The role
of these neurotransmission systems in aggression in humans
is largely based on candidate gene studies. Candidate gene
studies have mainly focused on the monoamine oxidase A gene
MAOA, the catecholamine o-methyltransferase gene COMT and
transporter and receptor genes for dopamine and serotonin,
including 5HTTP, DRD2, DRD4, and DRD5 (3, 7). However,
results from candidate gene studies replicated poorly, and
well-powered genome-wide association studies are required to
determine the value of these candidate genes for aggressive
behavior (7). Nevertheless, neurotransmission pathways remain
interesting candidates for biomarker discovery. Therefore, we
compared ratios of urinary metabolites representing anabolism
(synthesis) and catabolism (degradation) of serotonin, dopamine,
and GABA, between aggressive and non-aggressive children. We
found no significant associations of urinary neurotransmitter
ratios and childhood aggression in the discovery, replication,
or validation phase. However, several of the metabolites
included in our top 25% most strongly associated biomarkers
indicate that dysregulation of serotonergic, dopaminergic, and
GABAergic neurotransmitter pathways can be involved in
childhood aggression.

In the between-family discovery analysis we observed higher,
non-significant, levels of L-tryptophan in children with high
aggression, though the replication analysis revealed significantly
lower L-tryptophan levels in children with high aggression. A
previous study reported lower serum levels of tryptophan in
aggressive inmates and increases in the ratio of tryptophan
to serotonin (39). Similarly, lower plasma L-tryptophan levels
have been observed in patients with major depressive disorder
(MDD) as compared to controls (40). In the discovery analyses
we observed significantly higher levels of O-phosphoserine, an
ester of serine and phosphoric acid. High levels of phosphoserine
indicate dysregulation of serotonin and dopamine metabolism
pathways as it expresses a lack of pyridoxal-5-phosphate
(41). Due to low pyridoxal-5-phosphate levels L-tryptophan
cannot be converted to serotonin, nor can the conversion
of L-tyrosine to dopamine occur (41). While none of the
dopamine metabolites have been included in our top 25%
most strongly associated biomarkers, norepinephrine, which is

Frontiers in Psychiatry | www.frontiersin.org 10 March 2020 | Volume 11 | Article 165

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Hagenbeek et al. Aggression Metabolomics

synthesized through catabolism of dopamine, was included in
this top 25%. The role of norepinephrine in depression and
anxiety disorders is well-established (42), for example, increased
plasma norepinephrine levels were observed in new mothers
suffering from postpartum depression as compared to control
new mothers (43). In children, plasma norepinephrine levels
were correlated with inefficient conditioned pain modulation
response (44). Furthermore, norepinephrine is increased by S-
Adenosyl-Methionine (SAMe), which is the primary methyl
group donor for several metabolic compounds and cysteine
(DNA) methylation (45). SAMe is believed to have a positive
influence on multiple neuropsychiatric disorders and due to
its role in increasing catechol-O-methyltransferase (COMT)
activity, SAMe has been suggested to reduce aggressive behavior
in psychiatric patients (45, 46).

Of the GABAergic metabolites, only succinic acid was
included in the top 25% most strongly associated biomarker
results. In the discovery and replication analyses succinic
acid showed, non-significant, higher levels in children
with high aggression, though the direction of effect flipped
in the replication analysis. In contrast to our findings,
succinic semialdehyde dehydrogenase (SSADH) deficiency,
a rare inherited metabolic disorder, causes lower succinic
acid levels and has been associated with a number of
neuropsychiatric symptoms, including aggressive behavior
(47). The top 25% did include other metabolites involved in the
metabolism of GABAergic metabolites. For example, gamma-
glutamylglutamine is a dipeptide obtained from glutamine
and L-glutamic acid, low levels of gamma-glutamylglutamine
reflect a deficiency in gamma-glutamyltransferase system
responsible for glutamate transport across the membrane (48);
congruent with a previous study in drug naive patients with
schizophrenia, where lower levels of cerebrospinal fluid (CSF)
were observed as compared to controls (49), we reported
lower levels in children with high aggression. Furthermore,
in the discovery analyses we observed significantly increased
levels of gamma-L-glutamyl-L-alanine, after correction for
multiple testing. Gamma-L-glutamyl-L-alanine is formed by
the condensation of L-glutamic acid and L-alanine. Finally,
we also observed dysregulation of metabolites downstream
from GABAergic metabolites, such as L-arginine, which is
synthesized from glutamine through citrulline. We observed
lower levels of L-arginine in children with high aggression.
Our results are consistent with results obtained for other
psychiatric disorders, so have lower serum L-arginine levels
been associated with antisocial personality disorder (APD) and
schizophrenia (50, 51).

Dysregulation in Oxidative Stress
Pathways and Childhood Aggression
Inflammation has been identified as a potential mechanism
underlying aggressive behavior (16, 52). One of the mechanisms
believed to induce chronic inflammation is oxidative stress,
characterized by the disturbed balance between antioxidant
defenses and the production of reactive oxygen species (53).
In the discovery analyses we reported significantly higher levels

of the composite measure for oxidized DNA/RNA in children
with high aggression, though in the replication analysis we
observed non-significant lower oxidized DNA/RNA levels for
children with high aggression. A study investigating the role of
oxidative stress in adults with intermittent explosive disorder
(IED) observed increased plasma levels of the oxidative stress
markers 8-hydroxy-2

′
-deoxyguanosine and 8-isoprostane (54).

Congruent with our results in the discovery analyses, Coccaro et
al. (54) also reported significant positive correlation of oxidative
stress markers with aggression.

In addition to dysregulation in oxidative stress markers, we
have observed dysregulation in several metabolites involved in
oxidative stress pathways. As discussed, we found lower levels
of L-arginine in children with high aggression. L-arginine is
synthesized from glutamine through citrulline. Both L-arginine
and citrulline are precursors for nitric oxide, with low citrulline
levels indicating overconsumption of citrulline for nitric oxide
synthesis (55). Through nitric oxide mediation citrulline can play
a role in oxidative stress.

Similarly, SAMe has been discussed for its role in
norepinephrine metabolism. While SAMe was not measured
in the current study, methionine sulfoxide was included in
the top 25% most strongly associated biomarkers. Methionine
sulfoxide is obtained by oxidation of the sulfur in methionine
and high serum methionine levels have been associated with
anger and indirect aggression in APD patients (50). In contrast,
lower plasma methionine levels have been reported in MDD
patients as compared to controls (40, 56). Furthermore, after
correction for multiple testing higher levels of the methionine
precursor, L-alpha-aminobutyric acid, were observed for
children with high aggression. SAMe is also a precursor
for the cysteine metabolism pathway, which is involved
in the synthesis of the antioxidant glutathione (57). Low
glutathione production might cause oxidative stress (53).
Further suggestive evidence for a role of the cysteine metabolism
pathway comes from the significant positive association of
gamma-L-glutamyl-L-alanine with childhood aggression.
Gamma-L-glutamyl-L-alanine is a gamma-glutamyl peptide and
a substrate of a metabolite involved in glutathione metabolism.
A study in mice showed that gamma-glutamyl peptides are
synthesised through reactions with gamma-glutamylcysteine
and glutathione synthetase and that this particularly occurs
when glutathione is depleted (58). This is evident from the
observation that elevated gamma-glutamyl peptide levels
coincide with decreased glutathione levels in mice (58, 59). These
findings suggest that increased levels of the gamma-glutamyl
peptide, gamma-L-glutamyl-L-alanine, may reflect depleted
glutathione levels and supports a role for oxidative stress in
childhood aggression.

In general, inflammation and oxidative stress have been
associated with a great number of neuropsychiatric disorders
(60), therefore, it is likely that these mechanisms do not
play a role in childhood aggression specifically, but might
be more general mechanisms underlying neuropsychiatric
disorders. However, knowledge of the causal mechanisms
linking inflammation and oxidative stress with neuropsychiatric
disorders is largely lacking.
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Energy Metabolism and Childhood
Aggression
The results as obtained in the discovery replication and validation
analyses also suggest a potential role of energy metabolism
dysregulation in childhood aggression. Many of the main
metabolic pathways are involved in converting glucose into
energy (glycogenesis) and the breakdown of proteins to produce
glucose (gluconeogenesis) to maintain blood glucose levels (61).
We found L-aspartic acid, which is involved in gluconeogenesis
to differ significantly between twins scoring high on aggression
as compared to their low scoring co-twins in the within-
family replication analyses. While we reported lower urinary L-
aspartic acid levels in twins with high aggression, a previous
study reported increased serum levels in patients with APD
(50). Congruent with our findings, lower plasma levels of L-
aspartic acid were reported in MDD patients as compared
to controls (56). While glucose is the main energy source
in the human body, in cells and tissues with high-energy
demand, such as the skeletal muscles, the phosphorylation of
creatine produces phosphocreatine, a major source for adenosine
triphosphate [ATP; (62, 63)]. During the conversion of creatine
to phosphocreatine, creatinine is formed spontaneously (62).
We consistently, but not always significantly, report higher
creatinine levels in children with high aggression as compared
to children with low aggression across all three phases of the
study. Plasma creatinine has been associated with the severity
of depression symptoms (64) and patients with schizophrenia
showed decreased blood creatinine levels as compared to controls
(65). Processes for storing and obtaining energy in and from fatty
molecules are related to energy metabolism. In the current study
the current study we find associations with childhood aggression
for ethanolamine, involved in the synthesis of phospholipids,
N6-N6-N6-trimethyl-L-lysine, involved in oxidation of fatty
acids, and glyceric acid, involved in glycerolipid metabolism.
Previously, glyceric acid was included in a panel capable of
discriminating between patients with schizophrenia and controls
with an AUC of 0.94 (66), lower serum levels of ethanolamine
were observed in APD patients as compared to controls (50),
lower CSF levels of ethanolamine were reported inMDD patients
as compared to controls and associated to depression severity
and increased somatic anxiety symptoms in MDD patients (67),
in addition, serum levels of N6-N6-N6-trimethyl-L-lysine have
been associated with cognitive decline (68).

Strengths and Limitations
This study has several assets. First of all, the large-scale
study design, which could be achieved by investigating urinary
biomarkers, is a major strength of the current study. Urine is
an easily accessible biofluid and may be obtained with minimal
invasiveness, making it an ideal measure for large-scale data
collection in vulnerable groups, like children. We showed that
large scale standardized collection of urine and buccal samples
is feasible in epidemiological projects and attained a fairly high
response rates, considering that the sample included families
who had to cope with difficult children. Families successfully
kept samples at home in their freezers, until transport to
the laboratory. Obviously, collection of frozen samples from a

population-based sample at home is only feasible in a small
country like the Netherlands.

The use of a longitudinal twin cohort permitted us to
select children that were stable in their aggression status over
time (see Supplementary Table 5). We have shown that the
operationalization of high and low aggression in our twin sample
on the basis of previously collected data across ages, raters, and
instruments did not impact mean aggression differences between
concordant and discordant twin pairs at urine collection. By
including twin pairs who were concordant (high-high or low-
low) in their aggression scores, we further optimized toward
more extreme groups. The MZ twin pairs discordant for
aggression, enabled the analysis of within-family differences
and controlled for genetic differences between individuals as
well as potential confounders from the shared home or school
environment, as these are largely shared between MZ twins.
Finally, the clinical cases as included in the validation sample
had aggression scores at the extreme end of the aggression
distribution. As such, differences reported in the validation
analyses between clinical cases and twin controls, are likely to
offer the best indication of dysfunctional aggression. However, it
should also be noted that the Aggressive Behavior subscale of the
CBCL is derived from data-driven, factor analytic approaches.
Consequently, the scale includes several items that wouldn’t be
considered aggressive based on their content (e.g., Unusually
loud, Sulks). Therefore, approaches with more theory-driven
definitions of aggression (e.g., predatory aggression) should also
be explored.

Our collection protocol was tested extensively, and it
was kept relatively simple to ensure compliance. As a
consequence, the collected first-morning urine was not mid-
stream, as is sometimes recommended to avoid potential
bacterial contamination of the upper urinary tract (69).
Fortunately, dipstick results for the urine samples did not
indicate serious contaminations (data not shown), indicating
that these did not play a major role in our findings. Because
urine collection was performed by parents and children in
the home-setting, deviations from the collection protocol were
poorly monitored. Future studies may consider pairing the urine
collection brochures with short videos describing the protocol
to make it more accessible. Integrating such videos in an app,
together with the phenotypic data collection can allow for the
monitoring of the collection protocol and may also increase
protocol compliance.

In interpreting our results, the wide age range (5–13 years
of age) included in our study should be considered. This is
because the onset of puberty likely influences both aggressive
behavior and urinary metabolite profiles in older children.
A caveat of the analyses targeting neurotransmitter ratios
is the inability of targeting the complete neurotransmitter
pathways. Our platforms did not target 5-hydroxyindoleacetic
acid (5-HIAA), succinate semialdehyde, levodopa, dopamine,
or 3,4-dihydroxyphenyl acetic acid (DOPAC). Moreover, the
relationship of urine and brain metabolites is poorly understood,
as many of our metabolites of interest are also synthesized
in peripheral systems, therefore urinary metabolites do not
necessarily reflect processes in the brain (70). Finally, in addition
to all item-specific analyses, the results for 19 metabolites in
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general must be interpreted with caution because their RSDqc
values fell outside of the acceptable range (>15%), this includes
gamma-L-glutamyl-L-alanine, which was included in the top 25%
most associated metabolites.

CONCLUSIONS AND FUTURE
DIRECTIONS

This was the first metabolomics study on childhood aggression.
In both the discovery and replication phases of this study
we reported metabolites significantly associated with childhood
aggression, however, these results were not congruent between
the analyses and could not be validated. Our top metabolites
play roles in central metabolic processes, specifically energy
metabolism, neurotransmission, and oxidative stress. While
most of the metabolites have previously been associated with
neuropsychiatric disorders, only L-tryptophan and oxidized
DNA/RNA are known to be involved in adult aggression.
Further work is required to replicate our results and to
establish the viability of the suggested urinary biomarkers in
the early detection or treatment of childhood aggression, as
the translational applicability for the current results are still
limited. For a biomarker panel to be of practical utility it needs
to exhibit good discrimination among phenotype classes, with
high specificity and sensitivity (2). The metabolite levels analyzed
were quantified relative to an internal standard. To develop
a biomarker panel with practical utility and recommended
threshold values, absolute quantified values are preferred.

Moreover, while this study described the associations for a
large number of amines and organic acids, it has not included the
contribution of steroid hormones, as well as their interaction with
neurotransmitters. This is an active topic in aggression research
and in our ACTION project we aim to include the measurement
of steroid hormones. Elucidating the role of steroid hormones,
particularly in conjunction with metabolomics, may be of benefit
to the field. Finally, all current results are correlational, therefore
considerably more work needs to be done to determine the
causal role of metabolic dysregulation in (childhood) aggression,
combining multiple types of ‘omics techniques (e.g., genomics,
epigenomics, metabolomics) could be of aid here.
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