21,250 research outputs found

    An experimentally robust technique for halo measurement using the IPM at the Fermilab Booster

    Full text link
    We propose a model-independent quantity, L/GL/G, to characterize non-Gaussian tails in beam profiles observed with the Fermilab Booster Ion Profile Monitor. This quantity can be considered a measure of beam halo in the Booster. We use beam dynamics and detector simulations to demonstrate that L/GL/G is superior to kurtosis as an experimental measurement of beam halo when realistic beam shapes, detector effects and uncertainties are taken into account. We include the rationale and method of calculation for L/GL/G in addition to results of the experimental studies in the Booster where we show that L/GL/G is a useful halo discriminator

    A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems

    Get PDF
    In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c) to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored

    Quasi-static granular flow of ice mélange

    Get PDF
    We use Landsat 8 imagery to generate ice mélange velocity fields at Greenland’s three most productive outlet glaciers: Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. Winter velocity fields are generally steady and highly uniform. Summer velocity fields, on the other hand, tend to be much more variable and can be uniform, compressional, or extensional. We rarely observe compressional flow at Jakobshavn Isbræ or extensional flow at Helheim Glacier, while both are observed at Kangerdlugssuaq Glacier. Transverse velocity profiles from all three locations are suggestive of viscoplastic flow, in which deformation occurs primarily in shear zones along the fjord walls. We analyze the transverse profiles in the context of quasi-static flow using continuum rheologies for granular materials and find that the force per unit width that ice mélange exerts on glacier termini increases exponentially with the ice mélange length-to-width ratio and the effective coefficient of friction. Our estimates of ice mélange resistance are consistent with other independent estimates and suggest that ice mélange may be capable of inhibiting iceberg calving events, especially during winter. Moreover, our results provide geophysical-scale support for constitutive relationships for granular materials and suggest a potential avenue for modeling ice mélange dynamics with continuum models.From acknowledgments: Funding for this project was provided by the U.S. National Science Foundation (DMR-1506446 and DMR-1506307). Digital elevation models were provided by the Polar Geospatial Center under the U.S. National Science Foundation (OPP-1043681, OPP-1559691, and OPP-1542736)Ye

    A new inorganic atmospheric aerosol phase equilibrium model (UHAERO)

    Get PDF
    A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition

    Effect of topography on subglacial discharge and submarine melting during tidewater glacier retreat.

    Get PDF
    -We explored secular variations in subglacial discharge and submarine melting with an idealized model -Subglacial discharge increases as tidewater glaciers retreat along retrograde beds -Submarine melting depends on subglacial discharge and therefore promotes unstable retreat on retrograde bedsTo first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6–17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.Funding was provided by the National Oceanic and Atmospheric Association (NA13OAR4310098) and the U.S. National Science Foundation (PLR-1504288 and PLR-1504521).Ye

    Quasi-static granular flow of ice mélange

    Get PDF
    We use Landsat 8 imagery to generate ice mélange velocity fields at Greenland’s three most productive outlet glaciers: Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. Winter velocity fields are generally steady and highly uniform. Summer velocity fields, on the other hand, tend to be much more variable and can be uniform, compressional, or extensional. We rarely observe compressional flow at Jakobshavn Isbræ or extensional flow at Helheim Glacier, while both are observed at Kangerdlugssuaq Glacier. Transverse velocity profiles from all three locations are suggestive of viscoplastic flow, in which deformation occurs primarily in shear zones along the fjord walls. We analyze the transverse profiles in the context of quasi-static flow using continuum rheologies for granular materials and find that the force per unit width that ice mélange exerts on glacier termini increases exponentially with the ice mélange length-to-width ratio and the effective coefficient of friction. Our estimates of ice mélange resistance are consistent with other independent estimates and suggest that ice mélange may be capable of inhibiting iceberg calving events, especially during winter. Moreover, our results provide geophysical-scale support for constitutive relationships for granular materials and suggest a potential avenue for modeling ice mélange dynamics with continuum models.From acknowledgments: Funding for this project was provided by the U.S. National Science Foundation (DMR-1506446 and DMR-1506307). Digital elevation models were provided by the Polar Geospatial Center under the U.S. National Science Foundation (OPP-1043681, OPP-1559691, and OPP-1542736)Ye

    Handwriting Performance of Typical Second-Grade Students as Measured by the Evaluation Tool of Children\u27s Handwriting - Manuscript and Teacher Perceptions of Legibility

    Get PDF
    Background: The purpose of the study was to describe scores achieved by typical second-grade students on the Evaluation Tool of Children’s Handwriting – Manuscript and to compare scores with teacher perceptions. Method: As part of a larger study, the ETCH-M was administered to 74 second-grade students. Teachers scored classroom samples of handwriting assignments using a researcher-developed scale and scores were compared to ETCH-M scores to determine cutoff values for good versus poor handwriting. Results: Mean scores for total word legibility, total letter legibility, and total numeral legibility were 88.82%, 84.30%, and 89.26%, respectively. Cutoff scores below 82% for word legibility and 77% for letter legibility for second-grade students based on teacher perceptions of below average handwriting are cautiously suggested. Research with a larger dataset is needed. Boys scored significantly lower on the ETCH-M and this finding warrants further research. Conclusion: The findings add to the limited body of information about the psychometric properties of the ETCH-M and the normative performance of typical second-grade students

    Orienting Ion-Containing Block Copolymers Using AC Electric Field

    Full text link
    We consider orientation mechanisms for block copolymers in an electric field. Theoretical and experimental studies have shown that nonuniformity of the dielectric constant gives rise to a preferred orientation of the melt with respect to the applied field. We show that the presence of ions, as found in anionically prepared copolymers, may increase the alignment effect markedly. Time-varying (ac) and static (dc) fields are considered within a unified framework. We find that orientation of block copolymers can in principle be achieved without a dielectric contrast if there is a mobility contrast. The presence of ions is especially important at small field frequencies, as is in most experiments. Unlike the no-ions case, it is found that orienting forces depend on the polymer chain lengths. The mobile-ions mechanism suggested here can be used to reduce the magnitude of orienting fields as well as to discriminate between block copolymers of different lengths.Comment: 8 pages, 2 figure

    Feminist Philosophy of Disability: A Genealogical Intervention

    Get PDF
    This article is a feminist intervention into the ways that disability is researched and represented in philosophy at present. Nevertheless, some of the claims that I make over the course of the article are also pertinent to the marginalization in philosophy of other areas of inquiry, including philosophy of race, feminist philosophy more broadly, indigenous philosophies, and LGBTQI philosophy. Although the discipline of philosophy largely continues to operate under the guise of neutrality, rationality, and objectivity, the institutionalized structure of the discipline implicitly and explicitly promotes certain ontologies, epistemologies, and methodologies as bona fide philosophy, while casting the ontologies, epistemologies, and methodologies of marginalized philosophies as mere simulacra of allegedly fundamental ways of knowing and doing philosophy and thus rendering these marginalized philosophies more or less expendable. This article is designed to show that legitimized philosophical discourses are vital mechanisms in the problematization of disability

    Quantifying flow and stress in ice mélange, the world’s largest granular material.

    Get PDF
    Tidewater glacier fjords are often filled with a collection of calved icebergs, brash ice, and sea ice. For glaciers with high calving rates, this “m ́elange” of ice can be jam-packed, so that the flow of ice fragments is mostly determined by granular interactions. In the jammed state, ice m ́elange has been hypothesized to influence iceberg calving and capsize, dispersion and attenuation of ocean waves, injection of freshwater into fjords, and fjord circulation. However, detailed measurements of ice m ́elange are lacking due to difficulties in instrumenting remote, ice-choked fjords. Here we characterize the flow and associated stress in icem ́elange, using a combination of terrestrial radar data, laboratory experiments, and numerical simulations. We find that, during periods of terminus quiescence, ice m ́elange experiences laminar flow over timescales of hours to days. The uniform flow fields are bounded by shear margins along fjord walls where force chains between granular icebergs terminate. In addition, the average force per unit width that is transmitted to the glacier terminus, which can exceed 107N/m, increases exponentially with them ́elange length-to-width ratio. These “buttressing” forces are sufficiently high to inhibit the initiation of large-scale calving events, supporting the notion that ice m ́elange can be viewed as a weak granular ice shelf that transmits stresses from fjord walls back to glacier termini.Ye
    corecore