39 research outputs found

    Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - from a fixed beam line to an arc.

    Get PDF
    BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4%), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5%) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7%/-3.4%/-5.0% for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are +0.8%/-0.9%/-4.3%. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined

    Combined proton-photon therapy for non-small cell lung cancer

    Get PDF
    PURPOSE Advanced non-small cell lung cancer (NSCLC) is still a challenging indication for conventional photon radiotherapy. Proton therapy has the potential to improve outcomes, but proton treatment slots remain a limited resource despite an increasing number of proton therapy facilities. This work investigates the potential benefits of optimally combined proton-photon therapy delivered using a fixed horizontal proton beam line in combination with a photon Linac, which could increase accessibility to proton therapy for such a patient cohort. MATERIALS AND METHODS A treatment planning study has been conducted on a patient cohort of seven advanced NSCLC patients. Each patient had a planning computed tomography scan (CT) and multiple repeated CTs from three different days and for different breath-holds on each day. Treatment plans for combined proton-photon therapy (CPPT) were calculated for individual patients by optimizing the combined cumulative dose on the initial planning CT only (non-adapted) as well as on each daily CT respectively (adapted). The impact of inter-fractional changes and/or breath-hold variability was then assessed on the repeat breath-hold CTs. Results were compared to plans for IMRT or IMPT alone, as well as against combined treatments assuming a proton gantry. Plan quality was assessed in terms of dosimetric, robustness and NTCP metrics. RESULTS Combined treatment plans improved plan quality compared to IMRT treatments, especially in regard to reductions of low and medium doses to organs at risk (OARs), which translated into lower NTCP estimates for three side effects. For most patients, combined treatments achieved results close to IMPT-only plans. Inter-fractional changes impact mainly the target coverage of combined and IMPT treatments, while OARs doses were less affected by these changes. With plan adaptation however, target coverage of combined treatments remained high even when taking variability between breath-holds into account. CONCLUSIONS Optimally combined proton-photon plans improve treatment plan quality compared to IMRT only, potentially reducing the risk of toxicity while also allowing to potentially increase accessibility to proton therapy for NSCLC patients

    An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer

    Get PDF
    Deformable image registration (DIR) is an important component for dose accumulation and associated clinical outcome evaluation in radiotherapy. However, the resulting deformation vector field (DVF) is subject to unavoidable discrepancies when different algorithms are applied, leading to dosimetric uncertainties of the accumulated dose. We propose here an approach for proton therapy to estimate dosimetric uncertainties as a consequence of modeled or estimated DVF uncertainties. A patient-specific DVF uncertainty model was built on the first treatment fraction, by correlating the magnitude differences of five DIR results at each voxel to the magnitude of any single reference DIR. In the following fractions, only the reference DIR needs to be applied, and DVF geometric uncertainties were estimated by this model. The associated dosimetric uncertainties were then derived by considering the estimated geometric DVF uncertainty, the dose gradient of fractional recalculated dose distribution and the direction factor from the applied reference DIR of this fraction. This estimated dose uncertainty was respectively compared to the reference dose uncertainty when different DIRs were applied individually for each dose warping. This approach was validated on seven NSCLC patients, each with nine repeated CTs. The proposed model-based method is able to achieve dose uncertainty distribution on a conservative voxel-to-voxel comparison within +/- 5% of the prescribed dose to the 'reference' dosimetric uncertainty, for 77% of the voxels in the body and 66%-98% of voxels in investigated structures. We propose a method to estimate DIR induced uncertainties in dose accumulation for proton therapy of lung tumor treatments

    Biotechnology in Lausanne: The Rh D Project

    Get PDF
    Hemolytic disease of the newborn is an often fatal condition of some newborn babies due to the immunogenicity of their Rh D positive erythrocytes in the Rh D negative mother. This condition can be prevented by injecting anti-Rh D antibodies. The current source of these antibodies is blood from immunized human donors. In order to avoid problems with limited supply and donor safety, the Rh D project was set up to develop recombinant monoclonal anti-Rh D antibodies as a possible replacement. In a multidisciplinary collaboration between the Zentrallaboratorium Blutspendedienst (ZlB) of the Swiss Red Cross, the Center of Biotechnology of the University and the EPFL (CBUE), and the Institute of Chemical and Biochemical Engineering (EPFl), co-funded by the Swiss National Science Foundation and ZLB, a candidate monoclonal anti-Rh D antibody has been selected, expressed in CHO cells, and a manufacturing process for large-scale production has been developed

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore