9,189 research outputs found

    Chern-Simons terms from thermal circles and anomalies

    Get PDF
    We compute the full contribution of flavor and (or) Lorentz anomalies to the thermodynamic partition function. Apart from the Wess-Zumino consistency condition the Euclidean generating function must satisfy an extra requirement which we refer to as `consistency with the Euclidean vacuum.' The latter requirement fixes all Chern-Simons terms that arise in a particular Kaluza-Klein reduction of the theory. The solution to both conditions may be encoded in a `thermal anomaly polynomial' which we compute. Our construction fixes all the thermodynamic response parameters of a hydrodynamic theory associated with anomalies.Comment: 30 page

    Anomaly inflow and thermal equilibrium

    Get PDF
    Using the anomaly inflow mechanism, we compute the flavor/Lorentz non-invariant contribution to the partition function in a background with a U(1) isometry. This contribution is a local functional of the background fields. By identifying the U(1) isometry with Euclidean time we obtain a contribution of the anomaly to the thermodynamic partition function from which hydrostatic correlators can be efficiently computed. Our result is in line with, and an extension of, previous studies on the role of anomalies in a hydrodynamic setting. Along the way we find simplified expressions for Bardeen-Zumino polynomials and various transgression formulaeComment: 72 pages, 1 figure; v2: slight change to abstract, updated reference

    Probing Noise in Gene Expression and Protein Production

    Get PDF
    We derive exact solutions of simplified models for the temporal evolution of the protein concentration within a cell population arbitrarily far from the stationary state. We show that monitoring the dynamics can assist in modeling and understanding the nature of the noise and its role in gene expression and protein production. We introduce a new measure, the cell turnover distribution, which can be used to probe the phase of transcription of DNA into messenger RNA.Comment: 10 pages, 3 figures, supplementary information on reques

    Simulation study of gust alleviation in a tilt rotor aircraft, volume 1

    Get PDF
    The response to vertical turbulence in cruise of the HTR XV-15 design is studied using simulation techniques. This design is a modified version of the XV-15 with a hingeless fiberglass soft-in-plane rotor system. The parameters of a gust alleviation system are determined and the performance of the system is evaluated over a range of cruise velocities and altitudes

    Outgoing gravitational shock-wave at the inner horizon: The late-time limit of black hole interiors

    Get PDF
    We investigate the interiors of 3+1 dimensional asymptotically flat charged and rotating black holes as described by observers who fall into the black holes at late times, long after any perturbations of the exterior region have decayed. In the strict limit of late infall times, the initial experiences of such observers are precisely described by the region of the limiting stationary geometry to the past of its inner horizon. However, we argue that late infall-time observers encounter a null shockwave at the location of the would-be outgoing inner horizon. In particular, for spherically symmetric black hole spacetimes we demonstrate that freely-falling observers experience a metric discontinuity across this shock, that is, a gravitational shock-wave. Furthermore, the magnitude of this shock is at least of order unity. A similar phenomenon of metric discontinuity appears to take place at the inner horizon of a generically-perturbed spinning black hole. We compare the properties of this null shockwave singularity with those of the null weak singularity that forms at the Cauchy horizon.Comment: 23 pages, 4 figures, minor change

    Shapes of hydrophobic thick membranes

    Full text link
    We introduce and study the behavior of a tethered membrane of non-zero thickness embedded in three dimensions subject to an effective self-attraction induced by hydrophobicity arising from the tendency to minimize the area exposed to a solvent. The phase behavior and the nature of the folded conformations are found to be quite distinct in the small and large solvent size regimes. We demonstrate spontaneous symmetry-breaking with the membrane folding along a preferential axis, when the solvent molecules are small compared to the membrane thickness. For large solvent molecule size, a local crinkling mechanism effectively shields the membrane from the solvent, even in relatively flat conformations. We discuss the binding/unbinding transition of a membrane to a wall that serves to shield the membrane from the solvent.Comment: 7 pages, 5 figures, to appear in EP

    Variational approach to protein design and extraction of interaction potentials

    Full text link
    We present and discuss a novel approach to the direct and inverse protein folding problem. The proposed strategy is based on a variational approach that allows the simultaneous extraction of amino acid interactions and the low-temperature free energy of sequences of amino acids. The knowledge-based technique is simple and straightforward to implement even for realistic off-lattice proteins because it does not entail threading-like procedures. Its validity is assessed in the context of a lattice model by means of a variety of stringent checks.Comment: 5 pages, 3 figure
    • …
    corecore