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1 Summary

Anomalies are a ubiquitous feature of quantum field theory which have both experimental

and theoretical ramifications. While there is a vast literature concerned with the physical

consequences of anomalies in the vacuum state and their cohomological structure, little

is known about the manifestation of anomalies in more general states, including thermal

states. Recently [1, 2], following [3–24] (see also [25–29] for related works since) it was

argued that anomalies lead to distinctive physical phenomena which are only visible near

thermal equilibrium. In particular, it follows from the work of [1, 2] that a mixed flavor-

gravitational anomaly leads to currents which orient themselves along vorticity, which are

in principle measurable in astrophysical phenomena or in condensed matter systems whose

low-energy description possesses relativistic fermions. This implies the exciting prospect

that mixed anomalies may be measured in Nature. (See [30] for a recent explicit proposal.)

In the literature there are various notions of anomalies. Here we focus on anomalies

which are shared between global symmetries. That is, the anomalous currents obey non-

conservation laws, where the non-conservation is a local function of external sources. It is

the anomalies of this type that are exact and must be matched a la ‘t Hooft across scales.

The U(Nf )A axial symmetry of Nf free, massless Dirac fermions falls into this category,

while the U(1)A axial symmetry of QED does not. In what follows we give a complete

classification of the role of anomalies in equilibrium configurations. Our results are exact

for global anomalies, and only hold perturbatively for the anomalies that involve global

and gauge symmetries [31] (see also [2, 32]).
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The theories we study possess global symmetry currents. In what follows we will refer

to these currents as flavor currents and to the global symmetry as a flavor symmetry.

The theories are coupled to a background gauge field Aµ and a metric gµν . We label the

generating functional of the theory asWQFT[A, g]. When the theories are anomalous, WQFT

is not gauge and coordinate-reparametrization invariant: it varies under an infinitesimal

gauge and coordinate variation δχ,

δχWQFT =

∫
d2nx

√−g Gχ , (1.1)

where Gχ is a functional of the background fields and the transformation parameters and

we take the theory to live in 2n dimensions. The variation Gχ is tightly constrained by the

Wess-Zumino (WZ) consistency condition [33]. In odd dimensions, any local Gχ may be

compensated for by a suitable local redefinition of WQFT. In contrast, in even space-time

dimensions there are local Gχ’s which cannot be removed by a local redefinition of WQFT.

In what follows, we denote the non gauge invariant contribution to WQFT via Wanom. Thus,

WQFT = Wgauge−invariant +Wanom . (1.2)

The anomalies of a theory which manifest themselves as Gχ are encoded in the anomaly

polynomial P , which is a closed 2n + 2 form built out of the characteristic classes of the

background field strength F = 1
2Fµνdx

µ∧dxν and Riemann curvature Rµ
ν = 1

2R
µ
νρσdxρ∧

dxσ. Here and in what follows we use boldface characters to denote form fields. To go

from P to Gχ, one may use the anomaly inflow mechanism of Callan and Harvey [34] (for

a modern review, see e.g., appendices A–C of [35]).

We place our theory in a background with a compact symmetry direction. That is, we

put the theory on a manifold given by a circle fibered over a base manifold. In Euclidean

thermal field theory we may identify the circle with the thermal circle and WQFT with

the logarithm of the thermodynamic partition function. Since the background fields do

not depend on the symmetry direction, WQFT is essentially a generating functional on the

2n− 1-dimensional base. (One could imagine compactifying the underlying theory on the

circle.) Thus, in an even dimensional theory, whether anomalous or not, WQFT may be

reduced to the generating function on the odd-dimensional base manifold. Thus, we expect

that in such backgrounds one may find a local expression for Wanom. In [35] we showed

that this is indeed the case by explicitly constructing a local expression for Wanom.

One might have thought that Wgauge−invariant is independent of the anomalies of the

theory. This is not the case. There are Chern-Simons (CS) terms on the base manifold

which contribute to Wgauge−invariant. The coefficients of these CS terms are fixed by the

coefficients of the anomaly polynomial up to factors of 2π. In what follows we will refer

to these CS terms as transcendental terms and denote their contribution to the generating

function by Wtrans,

Wgauge−invariant = Wtrans +Wnon−anomalous . (1.3)

The main goal of this work is to determine the CS coefficients in Wtrans and their relation

to the anomalies.
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Calculations for free Weyl fermions in four [36, 37] and arbitrary dimension [18] have

shown that these CS coefficients (more precisely, even the CS terms on the base mani-

fold which do not involve the gravitational connection) are proportional to gravitational

anomaly coefficients. Computations carried out in the framework of the AdS/CFT corre-

spondence for four dimensional theories give similar results [38]. Recently, these computa-

tions have been extended to arbitrary dimension [39]. This has led to a conjecture that the

coefficients of the CS terms on the base manifold are determined by the anomalies in an

arbitrary interacting theory. This conjecture was verified in two [1] and four [1, 2] dimen-

sions. In this work, we extend the technique of [1] to verify this conjecture and go beyond

it. Let us review the thrust of the argument of [1] for two dimensional theories. Consider

a two dimensional field theory with a gravitational anomaly placed on R
2,∗, the Euclidean

plane with the origin removed and trivial boundary conditions have been imposed there.

We identify the angular direction on R
2,∗ with Euclidean time. The thermal partition func-

tion must then reproduce all rotationally-invariant correlation functions of the Euclidean

vacuum on R
2, including the one-point function of the stress tensor.1 In what follows

we will refer to this property as “consistency with the Euclidean vacuum,” and impose it

as a consistency requirement on WQFT. This requirement is non-trivial and relates the

gravitational anomaly of the two-dimensional theory to a Chern-Simons coefficient on the

base manifold.

Imposing consistency with the Euclidean vacuum, we find that the physics of anomalies

in the thermodynamic partition function may be encoded in a “thermal anomaly polyno-

mial” PT . The thermal anomaly polynomial is obtained from the anomaly polynomial P

via an algorithm, the “replacement rule.” It amounts to the following statement. Consider

an anomaly polynomial P , which we may view as a function of the Chern classes of F

and the Pontryagin classes pk(R) of Rµ
ν (see (3.49) for a concise definition of Pontryagin

classes). In terms of these we define PT as

PT = P

(
F ,pk(R) → pk(R)−

(
FT

2π

)2

∧ pk−1(R)

)
, (1.4)

where we have introduced a spurious U(1) gauge symmetry with connection AT and field

strength FT = dAT whose role will become clear shortly. We work in a convention where

p0(R) = 1.

A precursor to the “replacement rule” was conjectured in [18] using a slightly different

formalism than ours which involves thermal helicity correlators [27]. The conjecture of [18]

was based on results for free Weyl fermions [18, 36, 37] and has been recently found to

hold in the context of holography [39]. A concise statement which we can make is that the

conjecture of [27], in the current language, is an assertion about the part of PT in (1.4) that

sends p1(R) → −
(
FT

2π

)2
. The present work extends the conjecture of [27], and proves it.

1UponWick-rotation, this spacetime becomes a Rindler wedge. Our claim is tantamount to the statement

that the thermal partition function on Rindler space at temperature 1/(2π) computes boost-invariant

correlation functions for operator insertions within the wedge, including the energy-momentum tensor. See

e.g. [40] for related discussion.
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Using PT we construct a master function VT which is a 2n+1 form whose derivatives

give us the entire contribution of the anomaly to the flavor current and energy-momentum

tensor. To explain the construction of VT we need to use the background fields and sym-

metry data to construct a number of useful quantities.

We collectively denote the symmetry data as K = {Kµ,ΛK}, where Kµ is a timelike

vector and ΛK is a gauge transformation parameter. We label the corresponding variation

by δK . When we say that K generates a symmetry, we mean that δK vanishes when acting

on the background. From {Kµ,ΛK} we may define a local temperature, velocity field, and

flavor chemical potential via

T ≡ 1

β
√
−K2

, uµ ≡ Kµ

√
−K2

, µ ≡ KαAα + ΛK√
−K2

. (1.5)

The parameter β specifies the affine periodicity of the thermal circle (the integral curves

of Kµ). The definitions (1.5) are constructed to coincide with the standard temperature,

velocity, and chemical potential in the source-free thermal state (e.g., T corresponds to the

inverse length of the thermal circle). As explained in detail in [35], from these variables

one can construct the spin chemical potential

(µR)
µ
ν ≡ TDν

(
uµ

T

)
. (1.6)

Using the velocity one-form u = uµdx
µ one may construct hatted connections,

Â ≡ A+ µu , Γ̂µ
ν ≡ Γµ

ν + (µR)
µ
νu , ÂT ≡ AT + µTu , (1.7)

where Γ
µ
ν = Γµ

νρdxρ is the Christoffel connection one-form, and we have defined

µT ≡ 2πT . (1.8)

One may also define the corresponding hatted field strengths F̂ , R̂µ
ν , and F̂T . The vorticity

2ω, the magnetic flavor field B, and the magnetic curvature (BR)
µ
ν are defined via

ωµν ≡ ∂ρuσ − ∂σuρ
2

P ρ
µP

σ
ν , Bµν ≡ FρσP

ρ
µP

σ
ν , (BR)

µ
νρσ ≡ Rµ

ναβP
α
ρP

β
σ , (1.9)

for Pµν ≡ gµν + uµuν the transverse projector. The magnetic component associated with

the spurious U(1) symmetry, BT , is similarly defined.

The master function VT is given by

VT ≡ u

2ω
∧
(
PT − P̂T

)
, (1.10)

where by P̂T we mean PT (F̂ , R̂, F̂T ). The inverse factor of 2ω is a shorthand for the

following. The 2n + 3 form u ∧
(
PT − P̂T

)
is a polynomial of at least degree 1 in (2ω),

∑n+1
k=1 ck ∧ (2ω)k for ck a 2n − 2k + 3 form. The division by 2ω is an instruction to

remove a power of (2ω) to give
∑n

k=0 ck+1 ∧ (2ω)k. If we regard VT as a functional whose

independent variables are the velocity u, the chemical potentials {µ, µR, µT }, the magnetic
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fields {B, (BR)
µ
ν BT }, and the vorticity (2ω), then the (Hodge duals of) the anomaly-

induced flavor, heat, and spin currents are (see appendix I of [35] for our conventions for

the Hodge star)

⋆JT =
∂VT

∂B
, ⋆qT =

∂VT

∂(2ω)
, ⋆(LT )

µ
ν =

∂VT

∂(BR)νµ
, (1.11)

all evaluated at FT = 0. The anomaly-induced stress tensor is given by the combination

Tµν
T = uµqν + uνqµ +Dρ

[
L
µ[νρ]
T + L

ν[µρ]
T − L

ρ(µν)
T

]
, (1.12)

where Dµ is the covariant derivative and the brackets indicate (anti)symmetrization

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) . (1.13)

Using the same formalism, we also obtain an explicit expression for the contribution of the

anomalies to WQFT. We find that, in a gauge and coordinate choice where {Aµ, gµν} are

explicitly time-independent,

Wtrans +Wanom = −
∫

u

2ω
∧
(
IT − ÎT

)

AT=0,FT=0
, (1.14)

where IT is the Chern-Simons term associated with PT , i.e., dIT = PT . Similarly,

dÎT = P̂T .

As we have already mentioned, our construction relies on a certain consistency con-

dition with the Euclidean vacuum. We believe that this is not the most elegant way to

obtain our results. We say this on moral grounds — the argument we have used strikes

us as unnecessarily coarse given the mathematical elegance of anomalies — but we also

have some recent results in mind. As explained in [1] the consistency condition with the

Euclidean vacuum breaks down in the presence of gravitinos. An explicit computation [27]

for weakly coupled theories of chiral gravitinos has shown that the partition function does

not take the form (1.14). Perhaps relatedly, one may expect that coefficients of CS terms

satisfy a subtle quantization condition.2 Thus, it seems that a cleaner argument for fixing

Wtrans should exist.

That being said, our results are interesting on several levels. One area where they

have physical implications is in the hydrodynamic limit of anomalous field theories. In

what follows, we discuss this relation, but we emphasize that the results above stand on

their own without reference to hydrodynamics.

Hydrodynamics may be thought of as the low-energy effective description of thermal

field theory. Its degrees of freedom correspond to the conserved charges, and may be

chosen to be a local temperature T , a local chemical potential µ and a local velocity

field uµ normalized such that uµuµ = −1. The stress tensor and flavor currents may

be thought of as functions of the hydrodynamic variables and slowly varying background

fields in a derivative expansion [41, 42]. The resulting expansion of the stress tensor and

2We thank Z. Komargodski and D. Son for discussions on this point.
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current are referred to as the constitutive relations. In a Lorentz-invariant theory the

constitutive relations are fixed up to some scalar coefficients (e.g., the conductivity or shear

viscosity) which we term response parameters. The hydrodynamic variables {T, µ, uµ} are

then determined by demanding that the stress tensor and current solve the corresponding

Ward identities, which are regarded as equations of motion.

The response parameters of hydrodynamics are constrained by an internal consistency

condition, which amounts to a local version of the second law of thermodynamics. One

requires the existence of an entropy current sµ, whose divergence is non-negative for so-

lutions of the hydrodynamic equations [43]. This requirement is surprisingly restrictive,

and among other things it fixes equality-type and inequality-type interrelations between

various response parameters.

One may use a thermal partition function to compute zero-frequency correlation func-

tions at low-momentum. To do so, one assumes a finite static screening length, in which case

the partition function may be expanded in a derivative expansion [20, 44]. The consequent

correlation functions are also ostensibly computed by hydrodynamics, or more precisely,

hydrostatics. Upon matching the two, one finds that, for all cases discussed in the liter-

ature so far, the thermodynamic partition function precisely reproduces the equality-type

interrelations demanded by the existence of an entropy current. This matching has led to

a conjecture [20, 44] that the equality type relations of hydrodynamics associated with re-

sponse parameters are fully reproduced by the thermal partition function. If this conjecture

is true, then our analysis gives us the complete set of thermodynamic response parameters

which are completely fixed by the anomaly via equality type relations. In a companion

paper [45] we show that any thermodynamic partition function, including the contribu-

tions from anomalies, is consistent with the existence of an entropy current. In particular,

we compute a (Hodge dual of a) representative of the contribution of the anomaly to the

entropy current, Sµ
T , which is given by

⋆ST = 2π
∂VT

∂BT
, (1.15)

evaluated at FT = 0, plus terms that vanish in hydrostatic equilibrium.

The rest of this manuscript is organized as follows. In section 2 we review the results

of [35] required for the rest of our work including, in particular, the construction of Wanom

and the currents derived from it. We also describe how one can repackage CS terms on the

2n−1 dimensional base manifold as 2n+1 dimensional form fields. In section 3 we demand

consistency with the Euclidean vacuum and thereby fix the Chern-Simons coefficients of

the thermodynamic partition function. In the same section we also demonstrate the various

claims in this Summary, including the form of the thermal anomaly polynomial and VT .

We provide a detailed exposition of our results in appendix A for two, four, and ten

dimensional theories.

2 Components of the generating functional

Consider a quantum field theory coupled to background fields which posses a timelike sym-

metry. We will refer to the partition function of the theory in this background, evaluated

– 6 –
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when the time direction has been Wick-rotated to Euclidean signature and compactified, as

the thermodynamic partition function ZE . It is related to the generating functional WQFT

by WQFT = −i lnZE . We refer to the resulting state as an equilibrium state, bearing in

mind that it has spatial gradients.

A hydrostatic configuration is an example of an equilibrium state in which no entropy

is generated and where the background fields are slowly varying. A column of air in the

atmosphere is an example of such a state. By varying the thermodynamic partition function

with respect to the background fields we obtain correlation functions of the theory in a

hydrostatic configuration. These correlation functions, including the one-point functions

of the stress tensor and symmetry currents, allow us to relate the thermodynamic partition

function to hydrodynamics [20, 44].

As described in detail in [35], if we denote the generators of the timelike symmetry

by {Kµ,ΛK} (where ΛK is a gauge transformation parameter), then in equilibrium the

temperature, velocity field and chemical potential are given by (1.5). In what follows we will

work in a particularly useful gauge, the “transverse gauge,” where we take the background

to be explicitly time-independent. This amounts to taking ΛK = 0 and Kµ∂µ = β∂t for

β the parametric length of the Euclidean time circle. The metric and gauge field may be

written in the form

g = −e2s(x)(dt+ ai(x)dx
i)2 + pij(x)dx

idxj ,

A = A0(x)(dt+ ai(x)dx
i) + Ai(x)dx

i
(2.1)

in which case the relations (1.5) and (1.7) reduce to

βT = e−s , u = −es(dt+ a) ,
µ

T
= βA0 , Â = Aidx

i . (2.2)

We remind the reader that we consistently use boldface characters for form fields. We also

refer the reader to [20] for a thorough discussion of the transverse gauge and to [35] for a

covariant description of equilibrium states.

Our results crucially rely on the properties of equilibrium states, as well as on the

machinery developed in [35]. In what follows we briefly review the salient features of [35]

we require for our analysis, and go on to study the Chern-Simons terms on the spatial slice

thereafter.

2.1 Review of Wanom

In the presence of anomalies the generating functional WQFT must satisfy the Wess-Zumino

consistency conditions. As described in section 1, one may split WQFT into a gauge-

invariant contribution Wgauge−invariant and a non gauge-invariant and (or) non diffeomor-

phism invariant contribution Wanom, see (1.2). The Wess-Zumino consistency condition

fixes the allowed variations of Wanom under a gauge and (or) coordinate transformation.

This variation is determined via the descent relations in terms of an anomaly polynomial P .

In thermal equilibrium and in transverse gauge one can obtain an explicit local expression

for Wanom: given the anomaly polynomial one can construct a 2n form

WCS =
u

2ω
∧
(
I − Î

)
(2.3)

– 7 –
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where I is a Chern-Simons term associated with the anomaly polynomial P via dI = P

and with the conventions described in section 1 such that Wanom = −
∫
WCS. See [35]

for details. Varying WQFT with respect to the background sources will give us the con-

nected correlators in an equilibrium state. In particular, varying Wanom with respect to

the sources will give contributions to the connected correlators which are proportional to

the anomaly coefficients.

The currents obtained by varying the generating functional WQFT are referred to as

consistent currents since they are generated by a functional which satisfies the Wess-Zumino

consistency condition. The consistent currents have the unfortunate property that they are

non-gauge and (or) diffeomorphism covariant [46]. Luckily, one may add to the consistent

currents polynomials local in the sources (Bardeen-Zumino polynomials [46]) which render

the total expression covariant. The latter currents are called covariant currents. The

generating functional for covariant currents is given by [34],

Wcov = WQFT +

∫

M

I (2.4)

where M is a manifold on whose boundary WQFT is defined. After some massaging, one

can show that

Wcov = Wgauge−invariant +

∫

M

VP (2.5)

with

VP =
u

2ω
∧
(
P − P̂

)
. (2.6)

The contribution of Wanom to the covariant currents is given by

⋆JP =
∂VP

∂B
, ⋆qP =

∂VP

∂(2ω)
, ⋆(LP)µν =

∂VP

∂(BR)νµ
. (2.7)

Here, we have represented the flavor current Jµ
P
, the heat current qµ

P
, and the spin current

(LP)
ρµ

ν in terms of their Hodge duals. The heat and spin currents determine the stress

tensor via

Tµν
P

= 2u(µq
ν)
P

+Dλ

(
L
µ[νλ]
P

+ L
ν[µλ]
P

− L
λ(µν)
P

)
. (2.8)

We refer the interested reader to [35] for a derivation.

2.2 The thermal anomaly polynomial and Wtrans

The subscript P in (2.7) has been used to emphasize that these are not the full currents of

the theory but only a particular additive contribution to these currents which comes from

the non-gauge and (or) diffeomorphism invariant part of WQFT. Naively one would think

that the remaining gauge-invariant part of WQFT is oblivious to the anomalies. The goal

of this paper is to argue that this is not the case. Let us think of the Euclidean space-time

on which the theory is defined as a thermal circle fibered over a base manifold. The gauge-

invariant components of the generating functional may be split into manifestly gauge and

diffeomorphism invariant terms and Chern-Simons terms on the base manifold. We will

– 8 –
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refer to the component of the generating functional which includes these Chern-Simons

terms as Wtrans,

Wgauge−invariant = Wnon−anomalous +Wtrans . (2.9)

In this work, we argue that the coefficients of the Chern-Simons terms on the base-manifold

are fixed by the anomaly coefficients (as they appear in the anomaly polynomial) up to

factors of π, hence the subscript.

As a first step towards proving this claim, we will recast the expressions for Chern-

Simons terms on the base manifold into a form which is more reminiscent of the structure

of Wanom, e.g., equations (2.3) and (2.5). To do so, we introduce a fictitious abelian gauge

connection AT whose fictitious field strength is FT = dAT . Its usefulness will become clear

shortly. We define the chemical potential for this fictitious symmetry as

µT ≡ 2πT . (2.10)

We will ultimately set AT to vanish. Now, consider the 2n+ 2 form

Ptrans =
∑

q

FT
q ∧
∑

iq

ciqPiq (F , R) (2.11)

where Piq are various possible exact 2(n+1− q) forms constructed out of wedge products

of flavor field strength F and Riemann curvature Rµ
ν . Invariance under CPT implies that

q takes on even values. Consider the combinations

Vtrans =
u

2ω
∧
(
Ptrans − P̂trans

) ∣∣∣∣
FT=0

,

Wtrans =
u

2ω
∧
(
Itrans − Îtrans

) ∣∣∣∣
AT=0 ,FT=0

,

(2.12)

where Ptrans = dItrans. We claim that the Chern-Simons forms associated with Wtrans are

captured by (2.12) via3

Wcov = Wnon−anomalous +

∫

M

(VP + Vtrans) ,

WQFT = Wnon−anomalous −
∫

∂M

(WCS +Wtrans) .

(2.13)

To prove that (2.13) is correct, it is sufficient to show that Wtrans corresponds to a Chern-

Simons term on the base manifold and that dWtrans = −Vtrans.

Let us consider a particular representative of Ptrans,

Ptrans = FT
q ∧ P (F , R) . (2.14)

The associated Vtrans is given by

Vtrans =
u

2ω
∧
(
Ptrans − P̂trans

) ∣∣∣
FT=0

=
u

2ω
∧
(
BT

q ∧ P (B, BR)− (BT + 2ωµT )
q ∧ P (B̂, B̂R)

) ∣∣∣
FT=0

= −µTu ∧ (2ωµT )
q−1 ∧ P̂ .

(2.15)

3In defining Wtrans as in (2.12), we have adopted the notation used in [35], which has the unfortunate

byproduct that Wtrans = −
∫

∂M
Wtrans. We hope that this will not cause confusion.
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Here we and are working in our standard convention where hatted forms are evaluated

with hatted connections so that B̂T = BT + 2ωµT .

Using P = di we take Itrans in (2.12) to be Itrans = F
q
T ∧ i so that

Wtrans =
u

2ω
∧
(
BT

q ∧ i− (BT + 2ωµT )
q ∧ î

) ∣∣∣
AT=0 ,FT=0

= −µTu ∧ (2ωµT )
q−1 ∧ î .

(2.16)

We now go to the particular decomposition associated with the transverse gauge given

in (2.2) under which µTω = −2π
β
da and µTu = −2π

β
(dt+ a). We find that

∫

M

Vtrans =

∫

∂M

Wtrans (2.17)

where ∫

∂M

Wtrans =

∫

∂M

(
−2π

β

)q

dt ∧ (da)q−1 ∧ i
(
Â, B̂, Γ̂, B̂R

)
. (2.18)

Thus, we find that, after integrating over the time circle,
∫
Wtrans reduces to a Chern-

Simons form on the base manifold. Moreover, any Chern-Simons term on the base manifold

can be written in the form (2.18) after integrating by parts.

We can now state the goal of this paper more concisely. We claim that all the coeffi-

cients of the Chern-Simons terms on the base manifold are fixed in terms of the coefficients

of the anomaly polynomial. More succinctly, we claim that

PT = P +Ptrans (2.19)

where PT is determined via the replacement rule (1.4) and the parameters which are

determined by this equation are the coefficients ciq of (2.11). In the next section we will

use a novel consistency condition to argue for (2.19).

3 Obtaining the master function VT

We now turn to our main argument which fixes the coefficients of Wtrans (or alternately VT )

via the replacement rule (1.4). Our argument is essentially a generalization of the technique

used in [1] where we derived Wtrans for two and four dimensional theories. Our procedure

for computing Wtrans is as follows. We use Wcov to compute a particular correlator that

should vanish in the Euclidean vacuum. This correlator is described in subsection 3.1.

In subsection 3.2 we argue that Wnon−anomalous does not contribute to such a correlator.

We then find in subsection 3.3 that this correlation function does not vanish unless the

replacement rule is satisfied.

3.1 The setup

We place our theory in a highly symmetric 2n dimensional background N given by

N = R
1,1 × R

2k × R
4l × (CP2m1 × . . .× CP

2mp) , (3.1)
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with an infinitesimally small but covariantly constant flavor magnetic flux threading the

R
2k plane, and give the R

4k an infinitesimal angular velocity corresponding to a Kaluza

Klein flux along the thermal circle in the Euclidean version of the space-time.

To be more precise, let us label the coordinates along R
2k as xa, the coordinates along

R
4l as yi and the coordinates on the product of CPm spaces by zα. We span the Euclidean

version of R1,1 with polar coordinates such that they cover the punctured plane R2,∗ where

the time coordinate is identified with the angular direction. That is, in Lorentzian signature

we use an r, t coordinate system which covers a Rindler wedge of R1,1.

The infinitesimally small, but covariantly constant, flavor magnetic fields we turn on

arise from a flavor connection

A =
1

2
Babx

adxb , (3.2)

where Bab = −Bba are constant matrices valued in the Cartan subalgebra of the symmetry

algebra g so that [Bab, Bcd] = 0. The resulting flavor field strength is

F =
1

2
Babdx

a ∧ dxb . (3.3)

By construction DµFνρ = 0. We thread the entire R2k plane with flavor magnetic flux. By

a suitable SO(2k) transformation, we redefine the xa so that the only nonzero components

of Bab are {B12, B34, . . . , B(2k−1)2k}. We then work in a perturbative expansion in which

we neglect terms which include two powers of the same Bab. Within this perturbative

scheme, we can turn on any nonzero Chern class of F on the R
2k plane.

For the background metric we use the coordinate system

g = −r2
(
dt+

1

2
bijy

idyj
)2

+ dr2 + δabdx
adxb + δijdy

idyj +Gαβdz
αdzβ , (3.4)

where bij = −bji are constants and Gαβdz
αdzβ denotes the Fubini-Study metric on the

CP
2m1 × . . . × CP

2mp spaces. (Here we have suppressed radii of curvature Rmi
for each

CP
2mi space, as these radii decouple from our analysis.) Note that the Riemann curvature

constructed from the Fubini-Study metric is covariantly constant,

Dµ(RCP
)νρστ = 0 , (3.5)

similar to the constant flavor field strengths we turned on. The resulting Riemann curvature

threads the z directions. By a suitable choice of mi, we can turn on any Pontryagin class

(with index smaller than
∑

imi) of R
α
β in the z directions, in the same way that we were

able to turn on any Chern class of F (with index less than k) on the R
2k plane.

The metric (3.4) is written in a transverse gauge as in (2.1), with a Kaluza-Klein

connection

a =
1

2
bijy

idyj , (3.6)

from which we find a Kaluza-Klein field strength

f = da =
1

2
bijdy

i ∧ dyj , (3.7)
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i.e. we have turned on constant KK magnetic fields in the y directions. Paralleling our

discussion of flavor magnetic fields, we choose the bij so that the KK flux threads the R
4l

plane, or equivalently da2l 6= 0. We also perform an SO(4l) transformation to rotate the y’s

so that the only nonzero components of bij are {b12, b34, . . . b(4l−1)4l}, and moreover work

in a perturbative expansion wherein we neglect more than one power of the same bij . In

this limit, the KK field strength is covariantly constant, Dµfjk = 0.

Correlation functions obtained from the thermodynamic partition function, evaluated

on the backgrounds (3.1) must agree with Euclidean vacuum correlators on R
2+2k+4l ×(

CP
2m1 × . . .× CP

2mp
)
. More precisely, they must agree with zero frequency vacuum cor-

relators (where the frequency is the conjugate to Rindler time t). We term this property,

which we view as a consistency condition on the Euclidean generating functional, “consis-

tency with the Euclidean vacuum”.

In the remainder of this section we will check consistency of 〈T tr
cov〉 with the Euclidean

vacuum. We will show that for generic coefficients of Wtrans, 〈T tr
cov〉 will be proportional to

detB det b. By taking appropriate derivatives with respect to the external flavor gauge field

and Kaluza-Klein field we can obtain from 〈T tr
cov〉 a connected correlator in the Euclidian

vacuum of N in the absence of Kaluza-Klein and magnetic fields. We will refer to such a

correlator as C. More formally, the correlator C has k current insertions, Ja, and 2l energy

flux insertions, T 0i. The currents carry momenta in the R2k plane which are orthogonal to

each other and to the current insertions. Similarly, the momenta carried by the energy flux

insertions T 0i are also orthogonal to each other and to the energy flux directions. That is,

the correlator C obtained from 〈T tr
cov〉 is

C = 〈T tr
covT

0i1(p1) . . . T
0i2l(p2l)J

a1(q1) . . . J
ak(qk)〉 , (3.8)

where the T tr
cov insertion carries momentum −∑i pi−

∑
a qa. Due to the product structure

of N and the fact that C is a scalar from the point of view of the CP
m, C is of the form

C ∼ ǫi1...i2la1...ak(p1)i1 . . . (p2l)i2l(q1)a1 . . . (qk)ak . (3.9)

The ǫ tensor in (3.9) is the epsilon tensor on the R
2k+4l space.

The objects available to us for constructing the correlator C in the Euclidean vacuum

are the epsilon tensor, the metric, and the various momenta. As we now show, these

are insufficient to construct a correlator of the form (3.9). As we now show, these are

insufficient to construct a correlator of the form (3.9). Any rotational covariant version of

C must have a single epsilon tensor on R
2+2k+4l dotted into the k momenta carried by the

currents and 2l momenta carried by the energy-momentum insertions, leaving 2 + k + 2l

antisymmetric indices. This tensor is orthogonal to all momenta. In addition C has 2 + 4l

free indices corresponding to the stress tensor insertions and k free indices corresponding

to the current insertions. The symmetry of the stress tensor Tµν = T νµ implies that

only 1 + 2l of the 2 + 4l indices may be antisymmetrized. Consequently, all 1 + 2l + k

of the independent indices corresponding to the stress tensor and current insertions must

appear in the epsilon tensor, leaving one index on the epsilon tensor and the remaining

1+2l symmetric indices on the stress tensors. However, this dangling index on the epsilon
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tensor cannot be one the remaining 1 + 2l symmetric indices (as then two indices on the

same stress tensor insertion would appear in the epsilon tensor), nor can it be contracted

with one of the momenta. Thus, we cannot write a rotationally covariant tensor with the

correct symmetric properties of C. We conclude that in order for the partition function

to consistently reproduce correlators in the Euclidean vacuum, we must have 〈T tr
cov〉 = 0.

We will see that this provides non-trivial constraints on the coefficients of Wtrans. These

constraints will be captured by the replacement rule (2.19).

Before proceeding with the actual computation of 〈T tr
cov〉 in the backgrounds of interest,

let us pause and review our approach to proving the replacement rule (1.4) one more time.

We work in a particular background (3.1) which is specified by the numbers k, l and mi.

In such a background we compute 〈T tr
cov〉 and require it to vanish. As we will show, such a

requirement will give us a constraint of the form (2.19) with Ptrans given by an expression

of the form (2.14) which will be completely determined by k, l and mi. Varying over all

possible values of k, l and mi will allow us to probe all possible contributions to Ptrans thus

proving the replacement rule (1.4) for arbitrary coefficients of the anomaly polynomial.

Before ending this subsection, let us check that the number of configurations con-

structed from the backgrounds of the form (3.1) with appropriate fluxes, is equal or greater

to the number of coefficients in Ptrans. Such a check is a straightforward exercise in count-

ing. Consider a term F
2q
T ∧ p(F ,R) in Ptrans per (2.11), where p is a product of various

Chern classes of F and Pontryagin classes of R.4 Suppose that this term has 2r powers

of R, in which case it must have s = n + 1 − 2(q + r) powers of F . There are then r

independent Pontryagin classes that may be built out of this many powers of R, and s

independent Chern classes built out of this many powers of F .

Now let us count the number of backgrounds (3.2) and (3.4). These backgrounds

have 2k directions threaded by the flavor flux F so that F k is nonzero, and so there are

k different Chern classes that may be built out of F on this background. We also have∑
i 4mi ≡ 4m = 2(n − 1 − k − 2l) directions threaded by the Riemann curvature on the

CP
2mi directions; there are then m different Pontryagin classes which may be built out of

RCP. However, choosing l ≡ q−1 and m ≡ r, we see that there are k = n+1−2(q+r) = s

powers of F in this background. Thus, there are as many independent terms with 2q factors

of FT and 2r factors of R in Ptrans as there are independent backgrounds of the form (3.2)

and (3.4) with l = q − 1 and 4r directions filled by the CP
2mi spaces. Hence we have

a one-to-one and onto map between the coefficients of Ptrans and the backgrounds (3.2)

and (3.4). Demanding 〈T tr
cov〉 = 0 on all such backgrounds is sufficient to determine Ptrans.

3.2 Contributions to 〈T tr
cov〉

In sections 1 and 2 we have advocated for a separation

WQFT = Wnon−anomalous +Wtrans +Wanom (3.10)

where Wanom reproduces the anomalous variation of WQFT, Wtrans corresponds to Chern-

Simons terms on the base manifold and the remaining gauge and diffeomorphism in-

4We remind the reader that terms in Ptrans with an even number of FT ’s are CPT-preserving, while

terms with an odd number are CPT-violating.
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variant terms are collected in Wnon−anomalous. In what follows we will argue that only

Wtrans + Wanom may contribute to 〈T tr
cov〉 for the backgrounds described in the previous

subsection. In other words, we argue that the variation of Wnon−anomalous with respect to

small perturbations of the metric in the tr directions vanishes. In the next subsection we

will study the variation of Wtrans +Wanom with respect to such perturbations and choose

Wtrans such that 〈T tr
cov〉 = 0.

We start by enumerating the building blocks for all possible local tensors structures.

In equilibrium the temperature, fluid velocity and chemical potential are local expressions

of the background fields (see Equation (1.5)). For the backgrounds at hand, we find that

T =
1

2πr
, uµ∂µ =

1

r
∂0 , µ = 0 . (3.11)

First order gradients of these solutions satisfy

Dµuν = −uµaν + ωµν , (Dµ + aµ)T = 0 , (3.12)

with

aµdx
µ =

dr

r
, 2ω = −r

2
fijdy

i ∧ dyj , F =
1

2
Babdx

a ∧ dxb , (3.13)

where in the last entry we have reproduced (3.3) for convenience. Here, the acceleration

aµ is given by aµ = uνDνuµ. Using (3.12) the spin chemical potential is given by

(µR)
µ
ν = TDν

(
uµ

T

)
= −(aµuν − uµaν + ωµ

ν) . (3.14)

Second order gradients are given by

Dµaν = −a2uµuν − aµaν , Dµ(Tωνρ) = 0 , DµFνρ = 0 ,

ωµνa
ν = 0 , ωµνω

ν
ρ = 0 .

(3.15)

Since aµ is along the r direction, ωµν and aµ are covariantly constant in the {xa, yi, zα}
directions. In addition, the Riemann curvature tensor is given by

Rµ
νρσ=− (µR)

µ
ν(2ωρσ) + 2ωµ

ν(aρuσ − aσuρ) + (uµaσ − aµuσ)ωνρ − (uµaρ − aµuρ)ωνσ

+ ωµ
σ(uνaρ − uρaν)− ωµ

ρ(uνaσ − uσaν) + ωµ
ρωνσ − ωµ

σωνρ + (R
CP
)µνρσ, (3.16)

where (R
CP
)µνρσ is the Riemann curvature of the CP spaces constructed from Gαβ .

Since (R
CP
)µνρσ is covariantly constant it follows that, in the background we

are considering, all tensor structures one can construct are given by contractions of

{aµ, ωµν , Fµν , (RCP
)µνρσ}, the velocity field uµ, the metric gµν , and the epsilon tensor,

ǫµ1...µ2n (we take ǫ01...2n = +1/
√−g) perhaps multiplied by some function of the tempera-

ture T .

Consider the dependence of 〈T tr
cov〉 on the x, y and z coordinates. Due to the product

structure of our metric (3.4), the component T tr
cov of the stress tensor behaves as a scalar

with respect to the CP
mi spaces. By symmetry, it must be independent of the zα coordi-

nates. Furthermore, we have seen that all tensor structures which we may use to construct
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Tµν are independent of the yi and xa coordinates. Thus, T tr
cov must be independent of

the x, y and z coordinates. Or, it must be equal to its average over the yi, xa and zα

coordinates. Now, the average value of T tr
cov over the directions transverse to t and r can

be obtained by varying Wcov with respect to a metric perturbation δgtr(r). In equations

〈T tr
cov〉 =

2√−g

δWcov

δgtr
. (3.17)

Let us consider the contribution of Wnon−anomalous to 〈T tr
cov〉,

δgtr(r)Wnon−anomalous =

∫
d2nx

√−g
1

2
δgtr(r)T

tr
non−anomalous . (3.18)

Perturbing the metric at linear order in δgtr(r), is equivalent to an infinitesimal coordinate

transformation of the metric (3.4). Being an infinitesimal coordinate transformation the

covariant relations (3.15) and (3.16) must still hold. Thus, we should be able to construct

δgtr(r)Wnon−anomalous from {aµ, ωµν , Fµν , (RCP
)µνρσ}, the velocity field uµ, the metric gµν ,

and the epsilon tensor, ǫµ1...µ2n evaluated on the background (3.4) perturbed by g →
g + δgtr(r)dtdr. But the only tensor structures which are linear in δgtr are the metric

gµν and the velocity field uµ. It is then straightforward to check that there are no gauge-

invariant scalars which are linear in δgtr. This shows that no local term in Wnon−anomalous

can contribute to the one-point function of T tr
cov in the background (3.2) and (3.4). In the

same way, there are no local terms in Wnon−anomalous which are non-analytic in derivatives,

e.g. exp(−cT 2/aµa
µ), which contribute to 〈T tr

cov〉. It is somewhat subtle to argue that non-

local terms in Wnon−anomalous do not contribute to 〈T tr
cov〉 either. We refer the reader to [1]

for further discussion.

3.3 Constraining the thermal anomaly polynomial

Consistency of the Euclidean vacuum implies that 〈T tr
cov〉 = 0. We have argued that 〈T tr

cov〉
can not receive contributions from Wnon−anomalous. What remains is to compute the con-

tribution of Wtrans +Wanom to 〈T tr
cov〉.

By (1.12) we have

〈T tr
cov〉 = utqrT + urqtT +Dρ

[
L
t[rρ]
T + L

r[tρ]
T − L

ρ(tr)
T

]
. (3.19)

Let us simplify this expression. Since ur = 0 and LT is antisymmetric in its matrix-valued

indices (the last two), the first and last terms in (3.19) vanish.

Both ⋆qT and ⋆(LT )
µ
ν are 2n − 1 forms which are given by the velocity one form u

wedged with magnetic fields B, BR and the vorticity ω, multiplied by products of chemical

potentials. The two forms B and ω have legs along the R
2k and R

4l planes respectively.

The magnetic Riemann curvature follows from (3.16) and is given by

(BR)
µ
νρσ =− (µR)

µ
ν(2ωρσ) + (ωµ

σuν − uµωνσ)aρ − (ωµ
ρuν − uµωνρ)aσ

+ ωµ
ρωνσ − ωµ

σωνρ + (R
CP
)µνρσ .

(3.20)

Consequently, (BR)
µ
ν is a sum of four types of forms: ω, a ∧ ωµνdx

ν , ωµρωνσdx
ρ ∧ dxσ,

and (R
CP
)µν , the curvature form on the CP spaces. Let us focus on the dependence of ⋆qT
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and ⋆(LT )
µ
ν on the various form fields and ignore the contractions of the free indices for

the time-being. The heat and spin current are given by

⋆qT ,
⋆(LT ) ∼ u ∧Bq1 ∧ ωq2 ∧ (a ∧ ωµνdx

ν)q3 ∧ (ωµνωρσdx
ρdxσ)q4 ∧ (R

CP
)q5 . (3.21)

Equation (3.21) follows since ⋆qT and ⋆LT are 2n− 1 forms and the only form fields with

legs in the R
2k plane and CP spaces are B and R

CP
. Thus, q1 = k and q5 = 2m. Recall

that each factor of ωµν can appear at most once in our perturbative counting and that

u = −r(dt+ bijy
idyj/2) and a = dr/r. This implies that q3 = 1 or q3 = 0. In either case,

u must support the dt direction and then ⋆qT and ⋆LT must fill in at least 4l − 1 indices

in R
4l. Therefore we must have q4 = 0 and q2 = 2l and q3 = 0 or q2 = 2l − 1 and q3 = 1.

In the first case, the Hodge dual one-form is along the r direction, and in the second along

one of the yi directions. For each case, each nonzero ωµν then appears exactly once, and

so we can ignore the dependence of u, (µR)
µ
ν , and the Christoffel connection Γµ

νρ on bij .

Functionally, this allows us to take

u = −rdt+O(b) ,

(µR)
µ
ν = uµaν − aµuν +O(b) ,

Γµ
νρ = −(µR)

µ
νuρ − uµuνaρ + (Γ

CP
)µνρ +O(b)

(3.22)

when deriving 〈T tr
cov〉 from (3.21). Here, (Γ

CP
)µνρ is the Christoffel connection constructed

from Gαβ .

Since ⋆(LT )
µ
ν has a leg along dt, it follows that (LT )

tµ
ν = O(b2l+1) in our perturbative

scheme. Further, all tensor structures which comprise the spin current are covariantly

constant in the {xa, yi, zα} directions. Hence (3.19) simplifies to

〈T tr
cov〉 =

1

r
qrT +DrL

rtr
T +D0L

trt
T

=
1

r
qrT +

(
∂rL

rtr
T + Γr

µrL
µtr
T + Γt

µrL
rµr
T + Γr

µrL
rtµ
T

)

+
(
∂tL

trt
T + Γt

µtL
µrt
T + Γr

µtL
tµt
T + Γt

µtL
trµ
T

)

=
1

r
qrT + ∂rL

rtr
T ,

(3.23)

where we have used that Γr
µν = O(b) along with Ltµν

T = O(b2l+1) and L
µ(νρ)
T = 0. The

expression for 〈T tr
cov〉 depends only on the r component of (LT )

µν
ρ. Going back to (3.21) we

observe that only q2 = 2l, q3 = 0 will contribute to the expectation value we are interested

in. Consequently, we may focus on the terms in the heat and spin currents which are of

the form
⋆qT ,

⋆(LT ) ∼ u ∧Bk ∧ ω2l ∧ (R
CP
)2m . (3.24)

Since all the factors of bij have already been accounted for in (3.24) we may simplify our

expressions for the spin chemical potential and the magnetic component of the Riemann

tensor. The magnetic component of the Riemann curvature (3.20) may be approximated by

(BR)
µ
νρσ = −(µR)

µ
ν(2ωρσ) + (R

CP
)µνρσ . (3.25)
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In matrix form we have

(BR)
µ
ν =




ǫf 0 0 0

0 0 0 0

0 0 0 0

0 0 0 R
CP


 (3.26)

where by (3.13)

2ω = −rf, (3.27)

ǫ is the 2×2 antisymmetric tensor on R
1,1 representing the t and r directions (i.e., ǫtr = 1/r),

and the remaining blocks represents the x, y, z directions. The matrix form of the spin

chemical potential is given by

(µR)
µ
ν =




1
r
ǫ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (3.28)

implying that

(µR)
µ
ρ(µR)

ρ
ν =




1
r2
I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (3.29)

which is a projection onto the t, r coordinates. Using (3.25), B̂R is approximated by

(B̂R)
µ
ν = (R

CP
)µν =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 R
CP


 , (3.30)

which obeys

(µR)
µ
ρ(B̂R)

ρ
ν = (B̂R)

µ
ρ(µR)

ρ
ν = 0 (3.31)

for all intents and purposes.

We are now in a position to compute the contribution of VP to 〈T tr
cov〉. From (2.7) we

have

⋆qP =
∂VP

∂(2ω)
=

u

2ω
∧
(
P̂ −P

2ω
− ∂P̂

∂(2ω)

)
. (3.32)

Recalling that B̂ = B + 2ωµ and B̂R = BR + 2ωµR we may decompose the rightmost

term in the parenthesis on the right hand side of (3.32)

∂P̂

∂(2ω)
= µ · ∂P̂

∂B
+ (µR)

µ
ν

∂P̂

∂(BR)
µ
ν
. (3.33)

In the background we are considering µ = 0. Additionally, B̂R appears quadratically in

P̂ , so that the indices of the derivative ∂P̂/∂(BR)
ν
µ are carried by factors of B̂R, e.g.,

∂

∂(BR)
µ
ν
tr(B̂2p

R ) =
∂

∂(BR)
µ
ν
tr(BR + (2ω)µR)

2p = p(B̂2p−1
R )νµ . (3.34)
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Since µR dotted into B̂R vanishes by (3.31), we find that for the purpose of comput-

ing 〈T tr
cov〉,

∂P̂

∂(2ω)
= 0 , (3.35)

so that
⋆qP = −VP

2ω
. (3.36)

Similarly, we find from (2.7) that

⋆(LP)tr =
∂VP

∂(BR)rt
=

u

2ω
∧
(

∂P

∂(BR)rt
− ∂P̂

∂(B̂R)rt

)
. (3.37)

The second term in the parenthesis on the right hand side of (3.37) vanishes by our discus-

sion around (3.34). The first term in the parenthesis has a functional form which one may

determine explicitly, but is somewhat unenlightening. We only require its dependence on

r. It is not hard to see that parametrically

⋆(LP)tr ∼ u ∧ (B)k ∧ (µR)
t
r (µRω)2l ∧ (R

CP
)2m . (3.38)

In components (3.38) becomes

Lrtr
P ∼ ǫtrut ǫ

a1...a2kBa1a2 . . . Ba2k−1a2kǫ
i1...i4l(µR)

tr(µRωi1i2) . . . (µRωi4l−1i4l) , (3.39)

where we have used that the non vanishing traces of R
CP

on the CP spaces are proportional

to the volume form on the same. Recall that the epsilon tensor on the tr directions is given

by ǫtr = +1/r and the other epsilon tensors in (3.39) are given by the Levi-Civitta symbol.

Following (3.13), (3.22) and (3.29) we find that ut ∼ r, (µrω)2 ∼ r0 and µtr
r ∼ r−2, so that

Lrtr
P ∼ O

(
1

r2

)
. (3.40)

Thus, (3.23) reduces to

〈T tr
P 〉 = 1

r

(
qrP − 2Lrtr

P

)
. (3.41)

One may verify that (3.41) is generically nonzero. For instance, consider a two-dimensional

theory with P = cgtr(R
2). In appendix A we show (among other things) that the appro-

priate heat and spin currents are given by

qµ
P
= −cg(µR)

ρ
σ(µR)

σ
ρǫ

µνuν , Lµνρ
P

= −2cg(µR)
νρǫµσuσ , (3.42)

which in the present instance gives

qrP = −2cg
r2

, Lrtr
P = −2cg

r2
, 〈T tr

P 〉 = 2cg
r3

. (3.43)

So far we have computed the contribution of VP to 〈T tr
cov〉 and have shown that it is

non zero. In order to satisfy the consistency condition with the Euclidean vacuum we need

that the contributions coming from Wtrans precisely cancel those of VP . As advertised in
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section 2 we posit that the correct coefficients in Wtrans are captured by a thermal anomaly

polynomial PT defined in (1.4) via the replacement rule

PT = P

(
F , pk(R) → pk(R)−

(
FT

2π

)2

∧ pk−1(R)

)
(3.44)

with FT a fictitious gauge field which is set to zero at the end of the computation and the

pk(R) are the Pontryagin classes of R (defined in (3.49)). The combined contribution of

Wtrans and VP on the covariant currents is given by varying VT in place of VP where

VT =
u

2ω
∧
(
PT − P̂T

)
, (3.45)

and we set BT = 0 after varying VT .

In what follows, we will find it convenient to rewrite the replacement rule (3.44) in

terms of a fictitious Riemann curvature living in two dimensions higher. Thus, we write

the thermal anomaly polynomial as5

PT = P (F , R → R) (3.46)

where R is formally given by a two form valued (2n+ 2)× (2n+ 2) matrix

R
M

N =

(
R 0

0 iEFT

)
, with E =

(
0 1

−1 0

)
. (3.47)

Here, the first entry of R collectively refers to the 2n × 2n matrix R
µ
ν , and the second

entry to the two fictitious directions we have added. Indeed, since R is block diagonal, its

eigenvalues are the eigenvalues of Rµ
ν as well as ±FT .

6 As a result, we have

tr(R2p−1) = 0 , tr(R2p) = tr(R2p) + 2F 2p
T . (3.48)

Alternatively, the Pontryagin classes pk, defined through the formal infinite sum

det

(
I+

vR

2π

)
=

∞∑

k=0

vkpk(R) , (3.49)

satisfy

pk(R) = pk(R)−
(
FT

2π

)2

∧ pk−1(R) . (3.50)

Thus, equation (3.46) is equivalent to (3.44) as advertised.

Next we note that since PT is quadratic in BT we may set

BT = 0 , B̂T = 2ωµT = 4πTω = −f , (3.51)

5Note that the replacement R → R may be interpreted as the curvature of a (2n + 2) × (2n + 2)

matrix-valued one-form

(

Γ 0

0 iEAT

)

.

6The imaginary factor in R may be puzzling at first sight. The important feature of R is that its

eigenvalues are those of Rµ
ν and ±FT . We have simply chosen a representative R that accomplishes this

and moreover is antisymmetric, in analogy with R
µ
ν .
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Giving us the identity

u ∧P(F ,R) = u ∧PT (F ,R,FT )
∣∣∣
BT=0

(3.52)

and, using (3.48),

u ∧P

(
F̂ , tr

(
R̂

2p
))

= u ∧P

(
F̂ , tr

(
(BR + 2ωµR)

2p
)
+ 2(BT + 2ωµT )

) ∣∣∣
BT=0

= u ∧ P̂T

∣∣∣
BT=0

.
(3.53)

Thus, VT takes the alternate form

VT =
u

2ω
∧
(
P
(
F , tr

(
R2p

))
−P

(
F , tr

(
R̂

2p
)))

(3.54)

where we have used B̂ = B due to µ = 0 in the backgrounds under consideration. For

brevity we shall suppress the explicit dependence of P on the form fields F , R and R.

Hence, we denote the first term in the parenthesis on the right hand side of (3.54) simply

by P and the second term in the same parenthesis by P̃ . In this new notation (3.54)

becomes

VT =
u

2ω
∧
(
P − P̃

)
. (3.55)

To proceed, we write down the magnetic component of R, BR, and its hatted cousin

in our backgrounds. We do so in a matrix notation, in which the first four entries refer to

the {t, r} directions, followed by the {xa, yi, zα} directions. The fifth entry corresponds to

the two fictitious directions we have added. We then have

(BR)
M

N =




ǫf 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 R
CP

0

0 0 0 0 0




, (B̂R)
M

N =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 R
CP

0

0 0 0 0 −iEf




(3.56)

where we have used (3.51). Equation (3.56) together with (3.25) imply that u∧ tr
(
R2p

)
=

u ∧ tr
(
R̂

2p
)
vanish on the background we are considering from which we conclude that

VT vanishes on the backgrounds under consideration. Thus,

⋆qT = − u

2ω
∧ ∂P̃

∂(2ω)
= − u

2ω
∧ ∂f

∂(2ω)

∂B̂R

∂f
· ∂

∂B̂R

P

(
B, tr

(
B̂

2p
R

))
. (3.57)

Using (3.26), (3.28) and (3.56), we find that in our backgrounds

∂f

∂(2ω)

∂B̂R

∂f
· ∂

∂B̂R

P

(
B, tr

(
B̂

2p
R

))
= −µR · ∂

∂BR
P

(
B, tr

(
B

2p
R

))

= −2
∂P

∂(BR)rt
.

(3.58)

Thus,
⋆qT =

u

ω
∧ ∂P

∂(BR)rt
. (3.59)
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For the spin current a computation similar to the one above gives us

⋆(LT )
tr =

u

2ω
∧
(

∂P

∂(BR)rt
− ∂P̃

∂(BR)
· ∂BR

∂(BR)rt

)

=
u

2ω
∧
(

∂P

∂(BR)rt
− ∂P̃

∂(BR)rt

)

=
u

2ω
∧ ∂P

∂(BR)rt
.

(3.60)

Using the same argument that led to (3.40) we get

Ltrt
T ∼ O

(
1

r2

)
. (3.61)

Therefore, (3.23) implies that

〈T tr
cov〉 =

1

r

(
qrT − 2Lrtr

T

)
= 0 (3.62)

as required. This proves that the replacement rule (1.4) is a sufficient condition for sat-

isfying both the Wess-Zumino consistency condition and consistency with the Euclidean

vacuum. Further, given our counting argument at the end of subsection 3.1, the replace-

ment rule is also the unique solution to these consistency conditions.
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A Examples

In the main text, we have dealt with anomaly-induced transport in very general terms.

In what follows we will descend from the heights of abstract differential geometry and

come down to earth by working out the details of the transport coefficients for a few
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particular cases. In this appendix we will collect some results for field theories in two,

four, and for fun, ten dimensions. Anomaly-induced transport in two [1, 15, 22, 23]. and

four [1, 7, 10, 20, 21, 35] dimensions are interesting for phenomenological reasons and have

been extensively studied in the literature.

A.1 Two-dimensional theories

Consider a two-dimensional theory with a U(1) global symmetry and anomaly polynomial

P = cAF ∧ F + cgR
µ
ν ∧Rν

µ . (A.1)

In these conventions, the anomaly coefficients corresponding to a left-moving Weyl fermion

are cs = 1/(4π) and cg = 1/(96π). The thermal anomaly polynomial obtained using the

replacement rule (1.4) is given by

PT = P + 2cgFT ∧ FT . (A.2)

According to our discussion in section 2.2, the second term on the right hand side of (A.2)

manifests itself as a Chern-Simons term of the Euclidean generating functional. Denoting

the Chern-Simons terms of the Kaluza-Klein reduction of the theory over the thermal circle

as Wtrans and going to transverse gauge as in section 2 we find that

Wtrans =
8π2cg
β2

∫
dt ∧ a . (A.3)

To compute the covariant currents we use (A.2) and (1.10) to obtain the master

function

VT = −2u ∧
[
cA
(
µB + µ2ω

)
+ cgtr

(
µRBR + µR

2ω
)]

− 4cgu ∧
(
µTBT + µ2

Tω
)
, (A.4)

where we have defined a trace over matrix-valued forms to be

tr (A1A2 . . . Am) = (A1)
α1

α2
(A2)

α2

α3
. . . (Am)αm

α1
. (A.5)

The flavor, heat, and spin currents are given by (1.11)

⋆JT = −2cAµu ,

⋆qT = −
(
cAµ

2 + cgtr(µR
2) + 2cgµ

2
T

)
u

⋆(LT )
µ
ν = −2cg(µR)

µ
νu ,

(A.6)

which in coordinates gives (upon using µT = 2πT )

Jµ
T = −2cAµǫ

µνuν ,

qµT = −ǫµνuν

(
cAµ

2 + cg(µR)
α
β(µR)

β
α + 8π2cgT

2
)
,

(LT )
µα

β = −2cgǫ
µνuν(µR)

α
β ,

(A.7)

Let us decompose the anomaly-induced energy-momentum tensor

Tµν
T = uµqνT + uνqµT +Dρ

[
L
µ[νρ]
T + L

ν[µρ]
T − L

ρ(µν)
T

]
, (A.8)
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into longitudinal and transverse components,

Tµν
T = ETuµuν + PTP

µν +Q (uµǫνρuρ + uνǫµρuρ) , (A.9)

where in two dimensions, a transverse vector is necessarily proportional to ǫµνuν , and

there are no transverse traceless symmetric tensors. Plugging the anomaly-induced trans-

port (A.7) into (A.8), and using various differential identities that hold in equilibrium, we

find that

ET = PT = 0 , QT = −(cAµ
2 + 8π2cgT

2) + 2cg
DµDµT

T
, (A.10)

in accordance with the literature.

Previously, pure U(1) anomalies in two-dimensional fluids have been considered from an

effective action viewpoint in [15] and from the hydrostatic generating functional viewpoint

in [1, 22–24]. In [22–24], the authors did not impose the replacement rule which results in

several unfixed coefficients. One may reproduce the results of [22–24] by using

Ptrans = c̃1FT ∧ F + c̃2F
2
T (A.11)

with arbitrary c̃i’s from which one obtains

Jµ
T = −ǫµνuν (2cAµ+ 2πc̃1T ) ,

qµT = −ǫµνuν

(
cAµ

2 + cg(µR)
α
β(µR)

β
α + 2πc̃1µT + 4π2c̃2T

2
)
,

(LT )
µα

β = −2cgǫ
µνuν(µR)

α
β ,

(A.12)

The c̃i’s first appeared in [22] (although the physics of c̃1 only appears in [24]). Where these

results overlap with ours, they agree. If we now suggestively use the out of equilibrium

relations

(µR)
µ
ν = −uνa

µ − uµ

T
DνT + Pµ

νϑ , ϑ ≡ Dµu
µ ,

(µR)
µ
ν(µR)

ν
µ = − 2

T
aµDµT + ϑ2 +

Ṫ 2

T 2
, Ṫ = uµDµT .

(A.13)

we find that the anomaly-induced stress tensor is of the form (A.9) with

ET = 2cgǫ
µνuν

(
2aνϑ− Ṫ aν +Dν Ṫ

T
+

ṪDνT

T 2

)
,

PT = 2cgǫ
µνuν

(
−ȧν −Dνϑ+

Ṫ aν +Dν Ṫ

T
− ṪDνT

T 2

)
,

QT = −
(
cAµ

2 + 8π2cgT
2
)
+ cg

(
−2Dµa

µ + 2a2 + ϑ2 +
2Ṫ ϑ

T
− Ṫ 2

T 2

)
.

(A.14)

We emphasize that (A.14) is merely suggestive of the role of anomalies in real-time trans-

port. Whether or not the non-equilibrium terms in (A.14) are truly fixed by the anomaly

is beyond the scope of the current work.
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A.2 Four-dimensional theories

The anomaly polynomial for a four-dimensional theory with a U(1) global symmetry is

given by

P = cAF
3 + cmF ∧Rµ

ν ∧Rν
µ . (A.15)

In these conventions, the anomalies for a theory of a left-moving Weyl fermion are cA =

1/(24π2) and cm = 1/(192π2). The thermal anomaly polynomial is given by (1.4) to be

PT = P + 2cmF 2
T ∧ F . (A.16)

In a transverse gauge as in section 2, the Chern-Simons terms are then given by

Wtrans =
8π2cm
β2

∫
dt ∧ Â ∧ da . (A.17)

The master function VT is given by

VT =− u∧
[
cA
(
3µB2+6µ2B∧ω+4µ3ω2

)
+cm

(
2(B+2ωµ)∧tr(µRBR+µ2

Rω)+µ tr(B2
R)
)]

− 2cmu ∧
[
2(B + 2ωµ) ∧ (µTBT + µ2

Tω) + µB2
T

]
. (A.18)

Taking derivatives of VT , we obtain the flavor, heat, and spin currents by (1.11) to be

⋆JT = −(6cAµ+ 2c̃1µT )u ∧B − 2cm(µR)
µ
νu ∧ (BR)

µ
ν

− (3cAµ
2 + cmtr(µ2

R) + 2cmµ2
T )u ∧ (2ω) ,

⋆qT = −
[
3cAµ

2 + cmtr(µ2
R) + 2cmµ2

T

]
u ∧B − 2cmµ(µR)

µ
νu ∧ (BR)

ν
µ

− 2
[
cAµ

3 + cmµtr(µR)
2 + 2cmµ2

Tµ
]
u ∧ (2ω) ,

⋆(LT )
µ
ν = −2cm(µR)

µ
νu ∧B − 2cmµu ∧

(
(BR)

µ
ν + (µR)

µ
ν(2ω)

)
.

(A.19)

In components these currents are

Jµ
T = −6cAµB

µ − 2cm(µR)
α
β(BR)

µβ
α −

(
3cAµ

2 + cmtr(µ2
R) + 8π2cmT 2

)
ωµ ,

qµT = −
(
3cAµ

2 + cmtr(µ2
R) + 8π2cmT 2

)
Bµ − 2cmµ(µR)

α
β(BR)

µβ
α

− 2
(
cAµ

3 + cmµ tr(µR)
2 + 8π2cmµT 2

)
ωµ ,

(LT )
µα

β = −cm

(
2(µR)

α
βB

µ + 2µ(BR)
µα

β + (µR)
α
βω

µ
)
,

(A.20)

where in a slight abuse of notation we have defined

Bµ =
1

2
ǫµνρσuνFρσ , (BR)

µα
β =

1

2
ǫµνρσuνR

α
βρσ , ωµ = ǫµνρσuν∂ρuσ . (A.21)

As in two dimensions, to make contact with the literature prior to [1] and this work,

we start with an extended polynomial which is not fixed by the replacement rule

Ptrans = c̃1FT ∧ F 2 + c̃2FT ∧Rµ
ν ∧Rν

µ + c̃3F
2
T ∧ F + c̃4F

3
T , (A.22)
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where the c̃i’s are not fixed. The c̃i’s correspond to the Chern-Simons coefficients in the

hydrostatic Wtrans, which in transverse gauge is

Wtrans =

∫
dt∧

(
−2πc̃1

β
Â ∧ dÂ− 2πc̃2

β
tr

(
Γ̂ ∧ dΓ̂+

2

3
Γ̂3

)
+

4π2c̃3
β2

Â ∧ da− 8π3c̃4
β3

a ∧ da

)
.

(A.23)

Following our standard analysis we find that

Jµ
T = −(6cAµ+ 2c̃1µT )B

µ − 2cm(µR)
α
β(BR)

µβ
α

−
(
3cAµ

2 + cmtr(µ2
R) + 2c̃1µTµ+ c̃3µ

2
T

)
ωµ ,

qµT = −
(
3cAµ

3 + cmtr(µR)
2 + 2c̃1µTµ+ c̃3µ

2
T

)
Bµ − 2(cmµ+ c̃2µT )(µR)

α
β(BR)

µβ
α

− 2
(
c̃Aµ

3 + cmµtr(µ2
R) + c̃1µTµ

2 + c̃2µT tr(µ
2
R) + c̃3µ

2
Tµ+ c̃4µ

3
T

)
ωµ ,

(LT )
µα

β = −2cm(µR)
α
βB

µ − 2(cmµ+ c̃2µT )(BR)
µα

β − 2(cmµ+ c̃2µT )(µR)
α
βω

µ . (A.24)

The coefficients c̃3 and c̃4 first appeared in [10], while c̃1 first appeared in [20, 21]. The

results derived in those works of course agree with (A.24).

A.3 Ten dimensional theories

For fun, we conclude with a study of ten-dimensional theories. The anomaly polynomial

for a ten dimensional theory with pure gravitational anomalies is given by7

P = c1tr(R
2)3 + c2tr(R

4)tr(R2) + c3tr(R
6) , (A.25)

from which we obtain PT via the replacement rule (1.4)

PT = P +2(4c1 +2c2 + c3)F
6
T +2(6c1 + c2)F

4
T ∧ tr(R2) +F 2

T ∧
(
6c1tr(R

2)2 + 2c2tr(R
4)
)
.

(A.26)

The master function is quite long, we give here only the leading contribution in a derivative

expansion

VT = −2(4c1 + 2c2 + c3)(2πT )
6u ∧ (2ω)5 +O(B2

T ) +O(∂8) . (A.27)

This gives us

⋆qT = −10(4c1 + 2c2 + c3)(2πT )
6u ∧ (2ω)4 (A.28)

In components this gives

qµT = −10(4c1 + 2c2 + c3)

4!
(2πT )6ǫµν1...ν9uν1ων2ν3 . . . ων8ν9 . (A.29)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

7Since we consider a theory with gravitational anomalies alone, this example is for fun rather than

phenomenology. For instance, it is difficult to see how it can be embedded in string theory.
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