206 research outputs found

    Parameters of tissue iron overload and cardiac function in patients with thalassemia major and intermedia

    Get PDF
    Noninvasive T2∗ magnetic resonance imaging (MRI) assessment can stratify the risk of subsequent cardiac dysfunction in β-thalassemia major (TM) and β-thalassemia intermedia (TI) patients. The normal level of N-terminal pro B-type natriuretic peptides (NT-proBNP) can rule out acute heart failure. We aim to investigate the relation of NT-proBNP level, T2∗ MRI, and echocardiographic findings in TM and TI patients. In this cross-sectional study, 41 TM patients, 41 TI patients, and 41 healthy individuals (HI) were enrolled. NT-proBNP level, T2∗ MRI, and two-dimensional echocardiography were assessed for all patients and controls. There was statistically significant correlation between NT-proBNP levels and mitral inflow late diastolic velocity (r = -0.538; p = 0.006) in TM group. There was statistically significant correlation between NT-proBNP levels and tricuspid annulus systolic velocity (r = -0.438; p = 0.028), systolic velocity of septum (r = -0.472; p = 0.020), and mitral inflow early-to-late diastolic wave ratio (r = 0.592; p = 0.002) in TM group. Early diagnosis and treatment of myocardial iron overload are likely to prevent the mortality in patients with established ventricular dysfunction. Since NT-proBNP levels were not significantly increased in documented left ventricular (LV) diastolic dysfunction, this factor may not be sensitive for the detection of latent LV diastolic dysfunction in the early stages of disease progression

    Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Get PDF
    Background: Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings: A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance: The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity

    High voltage calibration method for the CMS RPC detector

    Get PDF
    The Resistive Plate Chambers (RPC) are used for muon triggers in the CMS experiment. To calibrate the high voltage working-points (WP) and identify degraded detectors due to radiation or chemical damage, a high voltage scan has been performed using 2017 data from pp collisions at a center-of-mass energy of 13 TeV. In this paper, we present the calibration method and the latest results obtained for the 2017 data. A comparison with all scans taken since 2011 is considered to investigate the stability of the detector performance in time

    CMSRPC efficiency measurement using the tag-and-probe method

    Get PDF
    We measure the efficiency of CMS Resistive Plate Chamber (RPC) detectors in proton-proton collisions at the centre-of-mass energy of 13 TeV using the tag-and-probe method. A muon from a Z(0) boson decay is selected as a probe of efficiency measurement, reconstructed using the CMS inner tracker and the rest of CMS muon systems. The overall efficiency of CMS RPC chambers during the 2016-2017 collision runs is measured to be more than 96% for the nominal RPC chambers

    RPC radiation background simulations for the high luminosity phase in the CMS experiment

    Get PDF
    The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the detector material could cause significant damage and result in a progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study the radiation environment and the impact on detector performance. Results are presented for CMS RPC stations considering the operating conditions expected at the HL-LHC

    Machine Learning based tool for CMS RPC currents quality monitoring

    Full text link
    The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to 2×10342\times 10^{34} cm−2s−1\text{cm}^{-2}\text{s}^{-1} are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future

    The CMS RPC detector performance and stability during LHC RUN-2

    Get PDF
    The CMS experiment, located at the Large Hadron Collider (LHC) in CERN, has a redundant muon system composed by three different gaseous detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness and redundancy to the muon trigger. The RPC system operation in the challenging background and pileup conditions of the LHC environment is presented. The RPC system provides information to all muon track finders and thus contributing to both muon trigger and reconstruction. The summary of the detector performance results obtained with proton-proton collision at root s = 13 TeV during 2016 and 2017 data taking have been presented. The stability of the system is presented in terms of efficiency and cluster size vs time and increasing instantaneous luminosity. Data-driven predictions about the expected performance during High Luminosity LHC (HL-LHC) stage have been reported

    RPC upgrade project for CMS Phase II

    Get PDF
    The Muon Upgrade Phase II of the Compact Muon Solenoid (CMS) aims to guarantee the optimal conditions of the present system and extend the eta coverage to ensure a reliable system for the High Luminosity Large Hadron Collider (HL-LHC) period. The Resistive Plate Chambers (RPCs) system will upgrade the off-detector electronics (called link system) of the chambers currently installed chambers and place improved RPCs (iRPCs) to cover the high pseudo-rapidity region, a challenging region for muon reconstruction in terms of background and momentum resolution. In order to find the best option for the iRPCs, an R&D program for new detectors was performed and real size prototypes have been tested in the Gamma Irradiation Facility (GIF++) at CERN. The results indicated that the technology suitable for the high background conditions is based on High Pressure Laminate (HPL) double-gap RPC. The RPC Upgrade Phase II program is planned to be ready after the Long Shutdown 3 (LS3)

    Effects of the electronic threshold on the performance of the RPC system of the CMS experiment

    Get PDF
    Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC). In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage
    • …
    corecore