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Abstract: The Resistive Plate Chambers (RPC) are used for muon triggers in the CMS experiment.
To calibrate the high voltage working-points (WP) and identify degraded detectors due to radiation
or chemical damage, a high voltage scan has been performed using 2017 data from pp collisions at
a center-of-mass energy of 13 TeV. In this paper, we present the calibration method and the latest
results obtained for the 2017 data. A comparison with all scans taken since 2011 is considered to
investigate the stability of the detector performance in time.
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1 Introduction

The Compact Muon Solenoid (CMS) [1] whose central feature is a superconducting solenoid mag-
net providing a magnetic field of 3.8 T has been used to study a wide range of physics phenomena
generated in hadron collisions at

√
s = 13TeV. In the CMS, muons are detected in gas-ionization

chambers within the pseudorapidity range |η | < 2.4, they are distributed in detection planes and us-
ing three technologies: drift tubes (DT), cathode strip chambers (CSC), and resistive plate chambers
(RPCs). The present RPC system covering |η | < 1.9 consists of a total of 1056 double-gap chamber
modules, and is divided in η partitions so-called “rolls”. The system is designed as muon trigger
detector and contributes to all muon track finders, a detailed description is discussed in reference [2].

The calibrations of high voltage (HV) for the RPC detector are performed by a HV scan
measurement once per year using a special calibration run or sequence of runs. Establishing the
correct operational working points in HV for the individual RPC detector is of primary importance,
to ensure a stable detector performance, to provide the optimal efficiency, and to keep the cluster
size required for the CMS triggers [2]. In addition, the periodic HV scan measurements enable
us to study the long-term stability of the detectors and to identify the potential degradation due to
“aging”. In 2017 two HV scans were performed with different instantaneous luminosities in pp
collisions at

√
s = 13TeV and different concentrations of the operational gas mixture. In this report,

the results of the first HV scan performed in 2017 are presented and compared with the previous
results obtained from 2011 to 2017.

2 Calibration method

The data are collected in a particular configuration of the detector, varying the high voltage values
within a HV range from 8800 to 9800V. Events of interest are selected using the DT and CSC
trigger and reconstructed using the CMS standard muon reconstruction [2]. A linear extrapolation
of track segment in DT and CSC chambers was performed toward the closest RPC strip plane,
and then matched to any RPC cluster in a range of 8 strips around the extrapolated impact point.
This method provides a measure for the efficiency, which is defined as the ratio of number of

– 1 –
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Figure 1. Efficiency as a function of HV measured for an endcap RPC. The red dashed curve represents the
performed fit using a sigmoid function.

tracks detected in the RPC divided by the number of extrapolated tracks identified in CSC and DT
detectors. The efficiency is measured for every HV point and the resulting distribution is fitted
chamber by chamber using a sigmoid function defined as

ε =
εmax

1 + exp(−λ(HV − HV50%))
, (2.1)

where λ characterize the slope of the sigmoid, εmax represents the plateau of the distribution, and
HV50% is the value of the voltage at 50% of the maximum efficiency. The HV where the efficiency
reaches 95% (HV95%) of the maximum efficiency (εmax) is obtained by applying the sigmoid
functional fit to the efficiency data and by interpolating the function. The working points (WPs)
for the RPCs in the barrel and endcap regions are defined as HV95% + 100V and HV95% + 120V,
respectively. Since the counting rate is different in both regions, the definition of the WPs allows
to measure a similar global efficiency throughout detector. An example of the sigmoid functional
fit and the efficiencies measured for an endcap RPC is shown in figure 1. The distributions of WPs
and the efficiencies at the WPs for the barrel, the endcap detectors at RE1, 2 and 3 station and at
RE4 station are shown in figure 2.

The RPCs which cannot provide the proper data required for the present study are excluded.
They are the chambers whose efficiency data obtained from the tracker detectors are missing. The
RPCs operated in a single-gap mode because of gas leak or HV problem are also excluded from
the analysis.

3 Results

3.1 The WP definition

A total 480 and 293 HV channels in barrel and endcap regions, respectively, supply between 2 barrel
and 6 endcap rolls. The working point in the channel (WPCH) is computed on the basis of the values

– 2 –
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the distributions for the barrel rolls. The blue sample represents the distribution for endcap rolls at RE1,
RE2, and RE3 stations, and the green sample presents the lately installed endcap RE4. The RPCs which
cannot provide proper data are excluded.
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Figure 3. The final results for WP in HV channels to be applied (left) and the distribution of the efficiency
at WPCH (right). The red sample represents the distributions for the barrel rolls. The blue sample represents
the distribution for endcap rolls at RE1, RE2, and RE3 stations, and the green sample presents the lately
installed endcap RE4. The RPCs which cannot provide proper data are excluded.

of each WP per roll (WProll) in a single HV channel, by taking into account the spread between the
maximum and the minimum of the WPsroll values. The WPCH is defined by the following:

WPCH =

{
< WProll > if WPMax

roll −WPMin
roll ≤ 100V

WPMin
roll + 100V if WPMax

roll −WPMin
roll > 100V

(3.1)

here WPMax
roll and WPMin

roll represent the maximum and minimum of WProll, respectively, and <

WProll > represent the average of the WPsroll values for each HV channel. The WPCH has been
determined for 400 and 271 HV channels in the barrel and endcap region, respectively, the results
for WPCH and the efficiencies at those values are shown in figure 3.

3.2 The stability of the detector

For this study 6 HV scans taken since 2011 are considered. From the standard 2011 to 2017 HV
scans are usually taken during the first calibration runs with collisions at the beginning and the

– 3 –
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Figure 4. Results from HV scans per year, used to explore the WP evolution, the efficiency at WP evolution
and the HV50% for endcap (top plots) and barrel (bottom plot) rolls. The efficiency at WP distributions have
been presented with a light blue color. With a blue, full circle is presented the mean efficiency at WP for each
of the HV scans. By red, full squares is represented the mean of the working point distribution for each HV
scan with their standard deviations. In magenta, full triangles represent the mean of the HV50% distribution
for each HV scan with their standard deviations.

middle of each operational year, and to consider different instantaneous luminosity conditions. Due
to the long shutdown one maintenance period in the Large Hadron Collider, the RPC detector was
OFF, therefore no HV scans were performed in 2013 and 2014. The 2015 scan was omitted in
order to avoid introducing unknown bias to the study due to the missing magnetic field. The same
selection criteria is used to compute the efficiency and also the same rolls are considered. The
results are shown in figure 4. As it can be seen in figure 4, a shift of about 40 and 20V to lower
values for the barrel and endcap rolls with respect to last year scan. This behavior is due to a higher
concentration of isobutane (5.2%) in the RPC gas mixture on the last year, a high efficiency is kept
despite this change.

4 Summary and conclusions

In 2017 two datasets have been taken with different luminosity conditions, in pp collisions at
√

s = 13TeV. The HV scan calibration method is an optimal method to obtain the best WP values
to the HV channel, and it has been used with profit in more than 84% of the chambers in the barrel,
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and 94% in the endcap. The presented results in figure 3 show the expected efficiency around 97%
in the detector when the computed WPCH is applied.

A shift of 40 and 20V to lower values, in the barrel and endcap, has been observed with respect
to last year scan, because of a higher concentration of isobutane (5.2%) in the RPC gas mixture.
The changes in the mixture does not the affect the efficiency.
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