39 research outputs found

    Structural lubricity: Role of dimension and symmetry

    Full text link
    When two chemically passivated solids are brought into contact, interfacial interactions between the solids compete with intrabulk elastic forces. The relative importance of these interactions, which are length-scale dependent, will be estimated using scaling arguments. If elastic interactions dominate on all length scales, solids will move as essentially rigid objects. This would imply superlow kinetic friction in UHV, provided wear was absent. The results of the scaling study depend on the symmetry of the surfaces and the dimensionalities of interface and solids. Some examples are discussed explicitly such as contacts between disordered three-dimensional solids and linear bearings realized from multiwall carbon nanotubes.Comment: 7 pages, 1 figur

    Combined numerical and experimental investigation of the micro-hydrodynamics of chevron-based textured patterns influencing conjunctional friction of sliding contacts

    Get PDF
    Reciprocating and low-speed sliding contacts can experience increased friction because of solid boundary interactions. Use of surface texturing has been shown to mitigate undue boundary friction and improve energy efficiency. A combined numerical and experimental investigation is presented to ascertain the beneficial effect of pressure perturbation caused by micro-hydrodynamics of entrapped reservoirs of lubricant in cavities of textured forms as well as improved micro-wedge flow. The results show good agreement between numerical predictions and experimental measurements using a precision sliding rig with a floating bed-plate. Results show that the texture pattern and distribution can be optimised for given conditions, dependent on the intended application under laboratory conditions. The translation of the same into practical in-field applications must be carried out in conjunction with the cost of fabrication and perceived economic gain. This means that near optimal conditions may suffice for most application areas and in practice lesser benefits may accrue than that obtained under ideal laboratory conditions

    Nanoscale Contact Mechanics between Two Grafted Polyelectrolyte Surfaces

    Get PDF
    The adhesive and frictional behavior of end-grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with atomic force microscope tips from which PDMAEMA or poly(methacrylic acid) (PMAA) were grafted has been shown to be a strong function of pH in aqueous solution. The interaction between the brush-coated surfaces is determined by a combination of electrostatic and noncovalent interactions, modulated by the effect of the solvation state on the brush and the resulting area of contact between the probe and the surface. For cationic PDMAEMA-PDMAEMA contacts at low pH, the brushes are highly solvated; a combination of electrostatic repulsion and a high degree of solvation (leading to a significant osmotic pressure) leads to a small area of contact, weak adhesion, and energy dissipation through plowing. As the pH increases, the electrostatic repulsion and the osmotic pressure decrease, leading to an increase in the area of contact and a concomitant increase in the strength of adhesion through hydrophobic interactions; as a consequence, the friction-load relationship becomes nonlinear as shear processes contribute to friction and the mechanics are fitted by DMT theory and, at higher pH, by the JKR model. For PDMAEMA-PMAA, the electrostatic interaction is attractive at neutral pH, leading to a large adhesion force, a large area of contact, and a nonlinear friction-load relationship. However, as the pH becomes either very small or very large, a significant charge is acquired by one of the contacting surfaces, leading to a large amount of bound solvent and a significant osmotic pressure that resists deformation. As a consequence, the area of contact is small, adhesion forces are reduced, and the friction-load relationship is linear, with energy dissipation dominated by molecular plowing

    Polymers and biopolymers at interfaces

    Get PDF
    This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application

    Permeability Variations Associated With Fault Reactivation in a Claystone Formation Investigated by Field Experiments and Numerical Simulations

    No full text
    We studied the relation between rupture and changes in permeability within a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). A series of water injection experiments were performed in a borehole straddle interval set within the damage zone of the main fault. A three-component displacement sensor allowed an estimation of the displacement of a minor fault plane reactivated during a succession of step rate pressure tests. The experiment reveals that the fault hydromechanical (HM) behavior is different from one test to the other with varying pressure levels needed to trigger rupture and different slip behavior under similar pressure conditions. Numerical simulations were performed to better understand the reason for such different behavior and to investigate the relation between rupture nucleation, permeability change, pressure diffusion, and rupture propagation. Our main findings are as follows: (i) a rate frictional law and a rate-and-state permeability law can reproduce the first test, but it appears that the rate constitutive parameters must be pressure dependent to reproduce the complex HM behavior observed during the successive injection tests; (ii) almost similar ruptures can create or destroy the fluid diffusion pathways; (iii) a too high or too low diffusivity created by the main rupture prevents secondary rupture events from occurring whereas “intermediate” diffusivity favors the nucleation of a secondary rupture associated with the fluid diffusion. However, because rupture may in certain cases destroy permeability, this succession of ruptures may not necessarily create a continuous hydraulic pathway

    Joint Friction during Deployment of a Near-Full-Scale Tensegrity Footbridge

    No full text
    corecore