197 research outputs found

    Two new species of Sympagella (Porifera: Hexactinellida: Rossellidae) collected from the Clarion-Clipperton Zone, East Pacific

    Get PDF
    Two new Hexactinellida species from the Clarion-Clipperton Zone (CCZ) in the East Pacific Ocean are described. They are the first described representatives of the genus Sympagella in this region. The new sponges were collected in 2013 during the ABYSSLINE Project´s first cruise, AB01, on board the RV Melville. The CCZ is known for its polymetallic nodules but megafaunal biodiversity is still poorly understood. Our findings suggest that the poriferan fauna of the eastern CCZ is both species rich and inadequately known, and that substantially more sampling and taxonomic studies of the CCZ sponge fauna are required to establish a megafaunal biogeography and evaluate potential extinction risks resulting from polymetallic-nodule mining.The attached is the first page of the published pdf of the article. If you wish to cite or consult the full article please visit the publisher's website: https://doi.org/10.11646/zootaxa.4466.1.1

    Data are inadequate to test whale falls as chemosynthetic stepping-stones using network analysis: faunal overlaps do support a stepping-stone role

    Get PDF
    © 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited

    KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering

    Get PDF
    We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ∼450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S8≡σ8Ωm/0.3−−−−−−√=0.800+0.029−0.027⁠, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28percent in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination

    Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

    Get PDF
    Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogs from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multi-band deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalog created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz=0.007\sigma_{\Delta z} = 0.007, which is a 60% improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA

    Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay

    Get PDF
    The ocean crisis is urgent and central to human wellbeing and life on Earth; past and current activities are damaging the planet's main life support system for future generations. We are witnessing an increase in ocean heat, disturbance, acidification, bio‐invasions and nutrients, and reducing oxygen levels. Several of these act like ratchets: once detrimental or negative changes have occurred, they may lock in place and may not be reversible, especially at gross ecological and ocean process scales. Each change may represent a loss to humanity of resources, ecosystem function, oxygen production and species. The longer we pursue unsuitable actions, the more we close the path to recovery and better ocean health and greater benefits for humanity in the future. We stand at a critical juncture and have identified eight priority issues that need to be addressed in unison to help avert a potential ecological disaster in the global ocean. They form a purposely ambitious agenda for global governance and are aimed at informing decision‐makers at a high level. They should also be of interest to the general public. Of all the themes, the highest priority is to rigorously address global warming and limit surface temperature rise to 1.5°C by 2100, as warming is the pre‐eminent factor driving change in the ocean. The other themes are establishing a robust and comprehensive High Seas Treaty, enforcing existing standards for Marine Protected Areas and expanding their coverage, especially in terms of high levels of protection, adopting a precautionary pause on deep‐sea mining, ending overfishing and destructive fishing practices, radically reducing marine pollution, putting in place a financing mechanism for ocean management and protection, and lastly, scaling up science/data gathering and facilitating data sharing. By implementing all eight measures in unison, as a coordinated strategy, we can build resilience to climate change, help sustain fisheries productivity, particularly for low‐income countries dependent on fisheries, protect coasts (e.g. via soft‐engineering/habitat‐based approaches), promote mitigation (e.g. carbon storage) and enable improved adaptation to rapid global change.The attached document is the author(’s’) final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    Low-cost, deep-sea imaging and analysis tools for deep-sea exploration: a collaborative design study

    Get PDF
    A minuscule fraction of the deep sea has been scientifically explored and characterized due to several constraints, including expense, inefficiency, exclusion, and the resulting inequitable access to tools and resources around the world. To meet the demand for understanding the largest biosphere on our planet, we must accelerate the pace and broaden the scope of exploration by adding low-cost, scalable tools to the traditional suite of research assets. Exploration strategies should increasingly employ collaborative, inclusive, and innovative research methods to promote inclusion, accessibility, and equity to ocean discovery globally. Here, we present an important step toward this new paradigm: a collaborative design study on technical capacity needs for equitable deep-sea exploration. The study focuses on opportunities and challenges related to low-cost, scalable tools for deep-sea data collection and artificial intelligence-driven data analysis. It was conducted in partnership with twenty marine professionals worldwide, covering a broad representation of geography, demographics, and domain knowledge within the ocean space. The results of the study include a set of technical requirements for low-cost deep-sea imaging and sensing systems and automated image and data analysis systems. As a result of the study, a camera system called Maka Niu was prototyped and is being field-tested by thirteen interviewees and an online AI-driven video analysis platform is in development. We also identified six categories of open design and implementation questions highlighting participant concerns and potential trade-offs that have not yet been addressed within the scope of the current projects but are identified as important considerations for future work. Finally, we offer recommendations for collaborative design projects related to the deep sea and outline our future work in this space

    The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genistein is an isoflavonoid present in soybeans that exhibits anti-carcinogenic properties. The issue of genistein as a potential anti-cancer drug has been addressed in some papers, but comprehensive genomic analysis to elucidate the molecular mechanisms underlying the effect elicited by genistein on cancer cells have not been performed on primary cancer cells, but rather on transformed cell lines. In the present study, we treated primary glioblastoma, rhabdomyosarcoma, hepatocellular carcinoma and human embryonic carcinoma cells (NCCIT) with μ-molar concentrations of genistein and assessed mitotic index, cell morphology, global gene expression, and specific cell-cycle regulating genes. We compared the expression profiles of NCCIT cells with that of the cancer cell lines in order to identify common genistein-dependent transcriptional changes and accompanying signaling cascades.</p> <p>Methods</p> <p>We treated primary cancer cells and NCCIT cells with 50 μM genistein for 48 h. Thereafter, we compared the mitotic index of treated versus untreated cells and investigated the protein expression of key regulatory self renewal factors as OCT4, SOX2 and NANOG. We then used gene expression arrays (Illumina) for genome-wide expression analysis and validated the results for genes of interest by means of Real-Time PCR. Functional annotations were then performed using the DAVID and KEGG online tools.</p> <p>Results</p> <p>We found that cancer cells treated with genistein undergo cell-cycle arrest at different checkpoints. This arrest was associated with a decrease in the mRNA levels of core regulatory genes, <it>PBK</it>, <it>BUB1</it>, and <it>CDC20 </it>as determined by microarray-analysis and verified by Real-Time PCR. In contrast, human NCCIT cells showed over-expression of <it>GADD45 A </it>and <it>G </it>(growth arrest- and DNA-damage-inducible proteins 45A and G), as well as down-regulation of OCT4, and NANOG protein. Furthermore, genistein induced the expression of apoptotic and anti-migratory proteins p53 and p38 in all cell lines. Genistein also up-regulated steady-state levels of both <it>CYCLIN A </it>and <it>B</it>.</p> <p>Conclusion</p> <p>The results of the present study, together with the results of earlier studies show that genistein targets genes involved in the progression of the M-phase of the cell cycle. In this respect it is of particular interest that this conclusion cannot be drawn from comparison of the individual genes found differentially regulated in the datasets, but by the rather global view of the pathways influenced by genistein treatment.</p

    Consistency of cosmic shear analyses in harmonic and real space

    Get PDF
    Recent cosmic shear studies have reported discrepancies of up to 1σ on the parameter S8=σ8Ωm/0.3‾‾‾‾‾‾‾√S8=σ8Ωm/0.3 between the analysis of shear power spectra and two-point correlation functions, derived from the same shear catalogues. It is not a priori clear whether the measured discrepancies are consistent with statistical fluctuations. In this paper, we investigate this issue in the context of the forthcoming analyses from the third year data of the Dark Energy Survey (DES Y3). We analyse DES Y3 mock catalogues from Gaussian simulations with a fast and accurate importance sampling pipeline. We show that the methodology for determining matching scale cuts in harmonic and real space is the key factor that contributes to the scatter between constraints derived from the two statistics. We compare the published scales cuts of the KiDS, Subaru-HSC, and DES surveys, and find that the correlation coefficients of posterior means range from over 80 per cent for our proposed cuts, down to 10 per cent for cuts used in the literature. We then study the interaction between scale cuts and systematic uncertainties arising from multiple sources: non-linear power spectrum, baryonic feedback, intrinsic alignments, uncertainties in the point spread function, and redshift distributions. We find that, given DES Y3 characteristics and proposed cuts, these uncertainties affect the two statistics similarly; the differential biases are below a third of the statistical uncertainty, with the largest biases arising from intrinsic alignment and baryonic feedback. While this work is aimed at DES Y3, the tools developed can be applied to Stage-IV surveys where statistical errors will be much smaller

    Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics

    Get PDF
    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences
    corecore