69 research outputs found

    BAFF, APRIL and BAFFR on the pathogenesis of Immunoglobulin-A vasculitis

    Get PDF
    BAFF, APRIL and BAFF-R are key proteins involved in the development of B-lymphocytes and autoimmunity. Additionally, BAFF, APRIL and BAFFR polymorphisms were associated with immune-mediated conditions, being BAFF GCTGT>A a shared insertion-deletion genetic variant for several autoimmune diseases. Accordingly, we assessed whether BAFF, APRIL and BAFFR represent novel genetic risk factors for Immunoglobulin-A vasculitis (IgAV), a predominantly B-lymphocyte inflammatory condition. BAFF rs374039502, which colocalizes with BAFF GCTGT>A, and two tag variants within APRIL (rs11552708 and rs6608) and BAFFR (rs7290134 and rs77874543) were genotyped in 386 Caucasian IgAV patients and 806 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when BAFF, APRIL and BAFFR variants were analysed independently. Likewise, no statistically significant differences were found in the genotype and allele frequencies of BAFF, APRIL or BAFFR when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when APRIL and BAFFR haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that BAFF, APRIL and BAFFR do not contribute to the genetic network underlying IgAV.Acknowledgements: We are indebted to the patients and healthy controls for their essential collaboration to this study. We also thank the National DNA Bank Repository (Salamanca) for supplying part of the control samples. This study was supported by European Union FEDER funds and `Fondo de Investigaciones Sanitarias´ (grant PI18/00042) from ‘Instituto de Salud Carlos III’ (ISCIII, Health Ministry, Spain). DP-P is a recipient of a Río Hortega programme fellowship from the ISCIII, co-funded by the European Social Fund (ESF, `Investing in your future´) (grant number CM20/00006). SR-M is supported by funds of the RETICS Program (RD16/0012/0009) (ISCIII, co-funded by the European Regional Development Fund (ERDF)). VP-C is supported by a pre-doctoral grant from IDIVAL (PREVAL 18/01). BA-M is a recipient of a `López Albo´ Post-Residency Programme funded by Servicio Cántabro de Salud. LL-G is supported by funds from IDIVAL (INNVAL20/06). OG is staff personnel of Xunta de Galicia (Servizo Galego de Saude (SERGAS)) through a research-staff stabilization contract (ISCIII/SERGAS) and his work is funded by ISCIII and the European Union FEDER fund (grant numbers RD16/0012/0014 (RIER) and PI17/00409). He is beneficiary of project funds from the Research Executive Agency (REA) of the European Union in the framework of MSCA-RISE Action of the H2020 Programme, Project 734899—Olive-Net. RL-M is a recipient of a Miguel Servet type I programme fellowship from the ISCIII, cofunded by ESF (`Investing in your future´) (grant number CP16/00033)

    Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of < 5 years in the Iranian population

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAim To examine the extent to which discriminatory testing using antibodies and Type 1 diabetes genetic risk score, validated in European populations, is applicable in a non‐European population. Methods We recruited 127 unrelated children with diabetes diagnosed between 9 months and 5 years from two centres in Iran. All children underwent targeted next‐generation sequencing of 35 monogenic diabetes genes. We measured three islet autoantibodies (islet antigen 2, glutamic acid decarboxylase and zinc transporter 8) and generated a Type 1 diabetes genetic risk score in all children. Results We identified six children with monogenic diabetes, including four novel mutations: homozygous mutations in WFS1 (n=3), SLC19A2 and SLC29A3, and a heterozygous mutation in GCK. All clinical features were similar in children with monogenic diabetes (n=6) and in the rest of the cohort (n=121). The Type 1 diabetes genetic risk score discriminated children with monogenic from Type 1 diabetes [area under the receiver‐operating characteristic curve 0.90 (95% CI 0.83–0.97)]. All children with monogenic diabetes were autoantibody‐negative. In children with no mutation, 59 were positive to glutamic acid decarboxylase, 39 to islet antigen 2 and 31 to zinc transporter 8. Measuring zinc transporter 8 increased the number of autoantibody‐positive individuals by eight. Conclusions The present study provides the first evidence that Type 1 diabetes genetic risk score can be used to distinguish monogenic from Type 1 diabetes in an Iranian population with a large number of consanguineous unions. This test can be used to identify children with a higher probability of having monogenic diabetes who could then undergo genetic testing. Identification of these individuals would reduce the cost of treatment and improve the management of their clinical course.Wellcome TrustDiabetes U

    Genetic polymorphisms of the RAS-cytokine pathway and chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is irreversible. It is associated with renal failure progression and atherosclerotic cardiovascular (CV) abnormalities. Nearly 60% of children with CKD are affected since birth with congenital or inherited kidney disorders. Preliminary evidence primarily from adult CKD studies indicates common genetic risk factors for CKD and atherosclerotic CV disease. Although multiple physiologic pathways share common genes for CKD and CV disease, substantial evidence supports our attention to the renin angiotensin system (RAS) and the interlinked inflammatory cascade because they modulate the progressions of renal and CV disease. Gene polymorphisms in the RAS-cytokine pathway, through altered gene expression of inflammatory cytokines, are potential factors that modulate the rate of CKD progression and CV abnormalities in patients with CKD. For studying such hypotheses, the cooperative efforts among scientific groups and the availability of robust and affordable technologies to genotype thousands of single nucleotide polymorphisms (SNPs) across the genome make genome-wide association studies an attractive paradigm for studying polygenic diseases such as CKD. Although attractive, such studies should be interpreted carefully, with a fundamental understanding of their potential weaknesses. Nevertheless, whole-genome association studies for diabetic nephropathy and future studies pertaining to other types of CKD will offer further insight for the development of targeted interventions to treat CKD and associated atherosclerotic CV abnormalities in the pediatric CKD population
    corecore