9 research outputs found
Analyse des endommagements dans les pipes en matériaux composites
Damage modelling of hybrid composite materials has played an important role in the design of composite structures. Although numerical models for the progressive damage of filament wound hybrid composite pipes such, matrix cracking, delamination, and fiber failure have been developed in the literature; there is still a need for improvement. This thesis aims to develop damage models suitable for predicting dynamic behaviour and intra-laminar and inter-laminar damage in hybrid composite tubes under internal pressure subjected to dynamic loading such as the impact of an external object. Fracture mechanics and continuum damage mechanics approaches were adopted to build the damage model. A detailed analysis was performed to have an overview of all the damage mechanisms until the final failure. Cohesive elements were inserted into the two-dimensional and three-dimensional models to simulate the initiation and propagation of matrix cracking and delamination in cross-layered laminates. The damage model was implemented in the FE code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Subsequently, validations based on test/calculation correlations on real subsystems and/or parts were performed. Damage initiation was predicted based on the stress-strain failure criteria, while the damage evolution law was based on the dissipation of failure energy. The nonlinear behavior of the material in shear was also taken into account and validated against experimental/numerical results. The predictions show excellent agreement with the experimental observations.La modélisation de l'endommagement des matériaux composites hybrides a joué un rôle important dans la conception des structures composites. Bien que des modèles numériques pour l'endommagement progressif des pipes en matériaux composites hybrides à enroulement filamentaire, tels que la fissuration matricielle, le délaminage et la rupture des fibres, aient été développés dans la littérature, des améliorations sont encore nécessaires. Cette thèse vise à développer des modèles d'endommagement adaptés à la prédiction du comportement dynamique et l'endommagement intra-laminaire et inter-laminaire dans les tubes en matériaux composites hybrides sous une pression interne, et soumis à un chargement dynamique tel que l'impact d'un objet externe. Les approches de la mécanique de la rupture et de la mécanique de l’endommagement ont été adoptées pour construire le modèle de dommages. Une analyse détaillée a été réalisée pour avoir une vue d'ensemble de tous les mécanismes d'endommagement jusqu'à la rupture finale. Des éléments cohésifs ont été implémentés dans les modèles bidimensionnels et tridimensionnels pour simuler l'initiation et la propagation d’endommagement interlaminaire (délaminage) dans les stratifiés. Une subroutine a été implémentée dans le code de calcul FE (Abaqus/Explicit) via une VUMAT afin de modéliser l’endommagement intralaminaire. Par la suite, des validations basées sur des corrélations essai/calcul sur des sous-systèmes et/ou des pièces réelles ont été effectuées. L'initiation des dommages est prédite sur la base des critères de rupture contrainte-déformation, tandis que la loi d'évolution des dommages est basée sur la dissipation de l'énergie de rupture. Le comportement non linéaire du matériau en cisaillement a également été pris en compte et validé par rapport aux résultats expérimentaux. Les prédictions montrent un excellent accord avec les observations expérimentales
Analyse des endommagements dans les pipes en matériaux composites
Damage modelling of hybrid composite materials has played an important role in the design of composite structures. Although numerical models for the progressive damage of filament wound hybrid composite pipes such, matrix cracking, delamination, and fiber failure have been developed in the literature; there is still a need for improvement. This thesis aims to develop damage models suitable for predicting dynamic behaviour and intra-laminar and inter-laminar damage in hybrid composite tubes under internal pressure subjected to dynamic loading such as the impact of an external object. Fracture mechanics and continuum damage mechanics approaches were adopted to build the damage model. A detailed analysis was performed to have an overview of all the damage mechanisms until the final failure. Cohesive elements were inserted into the two-dimensional and three-dimensional models to simulate the initiation and propagation of matrix cracking and delamination in cross-layered laminates. The damage model was implemented in the FE code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Subsequently, validations based on test/calculation correlations on real subsystems and/or parts were performed. Damage initiation was predicted based on the stress-strain failure criteria, while the damage evolution law was based on the dissipation of failure energy. The nonlinear behavior of the material in shear was also taken into account and validated against experimental/numerical results. The predictions show excellent agreement with the experimental observations.La modélisation de l'endommagement des matériaux composites hybrides a joué un rôle important dans la conception des structures composites. Bien que des modèles numériques pour l'endommagement progressif des pipes en matériaux composites hybrides à enroulement filamentaire, tels que la fissuration matricielle, le délaminage et la rupture des fibres, aient été développés dans la littérature, des améliorations sont encore nécessaires. Cette thèse vise à développer des modèles d'endommagement adaptés à la prédiction du comportement dynamique et l'endommagement intra-laminaire et inter-laminaire dans les tubes en matériaux composites hybrides sous une pression interne, et soumis à un chargement dynamique tel que l'impact d'un objet externe. Les approches de la mécanique de la rupture et de la mécanique de l’endommagement ont été adoptées pour construire le modèle de dommages. Une analyse détaillée a été réalisée pour avoir une vue d'ensemble de tous les mécanismes d'endommagement jusqu'à la rupture finale. Des éléments cohésifs ont été implémentés dans les modèles bidimensionnels et tridimensionnels pour simuler l'initiation et la propagation d’endommagement interlaminaire (délaminage) dans les stratifiés. Une subroutine a été implémentée dans le code de calcul FE (Abaqus/Explicit) via une VUMAT afin de modéliser l’endommagement intralaminaire. Par la suite, des validations basées sur des corrélations essai/calcul sur des sous-systèmes et/ou des pièces réelles ont été effectuées. L'initiation des dommages est prédite sur la base des critères de rupture contrainte-déformation, tandis que la loi d'évolution des dommages est basée sur la dissipation de l'énergie de rupture. Le comportement non linéaire du matériau en cisaillement a également été pris en compte et validé par rapport aux résultats expérimentaux. Les prédictions montrent un excellent accord avec les observations expérimentales
Analysis of damage in composite pipes
La modélisation de l'endommagement des matériaux composites hybrides a joué un rôle important dans la conception des structures composites. Bien que des modèles numériques pour l'endommagement progressif des pipes en matériaux composites hybrides à enroulement filamentaire, tels que la fissuration matricielle, le délaminage et la rupture des fibres, aient été développés dans la littérature, des améliorations sont encore nécessaires. Cette thèse vise à développer des modèles d'endommagement adaptés à la prédiction du comportement dynamique et l'endommagement intra-laminaire et inter-laminaire dans les tubes en matériaux composites hybrides sous une pression interne, et soumis à un chargement dynamique tel que l'impact d'un objet externe. Les approches de la mécanique de la rupture et de la mécanique de l’endommagement ont été adoptées pour construire le modèle de dommages. Une analyse détaillée a été réalisée pour avoir une vue d'ensemble de tous les mécanismes d'endommagement jusqu'à la rupture finale. Des éléments cohésifs ont été implémentés dans les modèles bidimensionnels et tridimensionnels pour simuler l'initiation et la propagation d’endommagement interlaminaire (délaminage) dans les stratifiés. Une subroutine a été implémentée dans le code de calcul FE (Abaqus/Explicit) via une VUMAT afin de modéliser l’endommagement intralaminaire. Par la suite, des validations basées sur des corrélations essai/calcul sur des sous-systèmes et/ou des pièces réelles ont été effectuées. L'initiation des dommages est prédite sur la base des critères de rupture contrainte-déformation, tandis que la loi d'évolution des dommages est basée sur la dissipation de l'énergie de rupture. Le comportement non linéaire du matériau en cisaillement a également été pris en compte et validé par rapport aux résultats expérimentaux. Les prédictions montrent un excellent accord avec les observations expérimentales.Damage modelling of hybrid composite materials has played an important role in the design of composite structures. Although numerical models for the progressive damage of filament wound hybrid composite pipes such, matrix cracking, delamination, and fiber failure have been developed in the literature; there is still a need for improvement. This thesis aims to develop damage models suitable for predicting dynamic behaviour and intra-laminar and inter-laminar damage in hybrid composite tubes under internal pressure subjected to dynamic loading such as the impact of an external object. Fracture mechanics and continuum damage mechanics approaches were adopted to build the damage model. A detailed analysis was performed to have an overview of all the damage mechanisms until the final failure. Cohesive elements were inserted into the two-dimensional and three-dimensional models to simulate the initiation and propagation of matrix cracking and delamination in cross-layered laminates. The damage model was implemented in the FE code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Subsequently, validations based on test/calculation correlations on real subsystems and/or parts were performed. Damage initiation was predicted based on the stress-strain failure criteria, while the damage evolution law was based on the dissipation of failure energy. The nonlinear behavior of the material in shear was also taken into account and validated against experimental/numerical results. The predictions show excellent agreement with the experimental observations
Comparative study of tubular composite structure subjected to internal pressure loading: Analytical and numerical investigation
International audienceThe purpose of this paper is to study the mechanical behaviour of a multi-layered composite tubular structure with various orientations subjected to internal hydrostatic pressure. The first part of this paper is devoted to studying stress analysis using the analytical approach. The 3 D analysis of the composite pipe originally made with carbon/epoxy is studied and compared with a pipe made of E-glass/epoxy; each layer is examined with five orientations. The hoop, axial, longitudinal, transversal, and shear stresses are obtained for each layer of the composite pipe simultaneously. The hybrid composite pipe is done to take advantage of the properties of each fiber and the studied hybridisation. `To validate some cases of the presented results, a numerical model is developed in ANSYS workbench software; this particular model is characterized by very close to the theoretical results. Throughout the investigation, it is observed that the behaviour of composite carbon/epoxy is the most resistant compared to glass/epoxy, and the results obtained in the case of hybrid shows that the variability of the stacking sequences generates the variation of the behaviour on composite hybrid pipe. It can be increased the design material utilisation and working pressure level by winding angle variation or hybridized between stacking sequences. The ability of this new 3 D model to simulate the stress evolution in the full-scale composite tubular structure under internal pressure events were demonstrated
A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact
Pressurized hybrid composite pipe structures, produced by filament wound subjected to impact loads, were numerically investigated. A combined 3D-FE Model based on the use of interlaminar and intralaminar damage models is established. Intralaminar damages such as matrix cracking and fibre failures are predicted using 3D Hashin criteria, whereas interlaminar damage (delamination) was evaluated using cohesive zone elements. The damage model was coded and implemented as a user-defined material subroutine (VUMAT) for Abaqus/Explicit. Numerical results in the form of contact force, displacement and energy dissipated compare well with the experimental results. Predicted matrix damage in each cross-ply of hybrid composite pipe and delamination onset were also presented in this paper. The ability of this new 3D model to simulate the damage evolution in the full-scale pressurized hybrid composite pipe under low-velocity impact events were demonstrated throughout comparison with existing experimental results published
Finite Element Analysis of Impact-Induced Damage in Pressurized Hybrid Composites Pipes
International audienceThe high mechanical performance of filament wound hybrid composite pipes can be adversely affected by their low resistance to accidental impact. Loads of dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, a finite element (FE) model of pressurized hybrid composite pipe is developed and performed to predict the damage initiation and evolution under low-velocity impact through simulations with ABAQUS/Explicit. Hashin’s failure theory is used as failure criterion. At the first stage, load–time histories, and impactor displacement time limits are estimated in an FE model. The numerical results are confronted with the experimental values published in the literature. Once the model was validated, damage initiation and propagation were analyzed, where it is observed that damage mainly occurs by matrix cracking, damage evolution in the matrix in tension, compression and shear are presented and discussed in detail
Impact response of filament-wound structure with polymeric liner: Experimental and numerical investigation (Part-A)
International audienceFilament wound pipelines and Type IV composite pressure vessels (CPVs) constitute polymeric liners and are extensively used to transport and store petroleum products, hydrogen, and compressed natural gas (CNG). The polymeric liner does not share much pressure load; hence, the composite layers share most of the load. The situation gets worse under transverse impact loads on such structures. For the polymeric liner to be effectively used in pipelines and CPVs, it is crucial to study impact response through testing and computational methods. This article presents experimental and numerical investigations of the transverse low-velocity impact response of filament wound samples. High-density polyethylene (HDPE) liner was adopted, and carbon fiber (T700) continuous filaments with epoxy resin were wound over the liner with several layers. A drop-weight impact loading with 40 J energy has been applied to the fabricated samples. The development of impact damage was assessed using the finite element method, and the damage modes have been discussed. The specimen remains unperforated at the chosen energy level. Though HDPE is ductile, however at impact loads liner damage was encountered, displaying a brittle fracture. At higher strain rates, the material reaches its brittle fracture point sooner, leading to failure. The material breaks as brittle due to its inability to dissipate impact energy quickly, resulting in fracturing instead of deformation. Fiber damage was scarcely seen; however, matrix damage has been the dominant failure mode at the chosen impact energy. Comparisons between the simulation and test findings were made, and they agreed on force-time and force-displacement histories
Impact response of filament-wound structure with polymeric liner: Experimental and numerical investigation (Part-A)
Filament wound pipelines and Type IV composite pressure vessels (CPVs) constitute polymeric liners and are extensively used to transport and store petroleum products, hydrogen, and compressed natural gas (CNG). The polymeric liner does not share much pressure load; hence, the composite layers share most of the load. The situation gets worse under transverse impact loads on such structures. For the polymeric liner to be effectively used in pipelines and CPVs, it is crucial to study impact response through testing and computational methods. This article presents experimental and numerical investigations of the transverse low-velocity impact response of filament wound samples. High-density polyethylene (HDPE) liner was adopted, and carbon fiber (T700) continuous filaments with epoxy resin were wound over the liner with several layers. A drop-weight impact loading with 40 J energy has been applied to the fabricated samples. The development of impact damage was assessed using the finite element method, and the damage modes have been discussed. The specimen remains unperforated at the chosen energy level. Though HDPE is ductile, however at impact loads liner damage was encountered, displaying a brittle fracture. At higher strain rates, the material reaches its brittle fracture point sooner, leading to failure. The material breaks as brittle due to its inability to dissipate impact energy quickly, resulting in fracturing instead of deformation. Fiber damage was scarcely seen; however, matrix damage has been the dominant failure mode at the chosen impact energy. Comparisons between the simulation and test findings were made, and they agreed on force-time and force-displacement histories. © 2024 The Author
Influence of winding angles on hoop stress in composite pressure vessels: Finite element analysis
Various pressure vessels from Type I to Type IV are used to store hydrogen and compressed natural gas (CNG) at high pressures. The polymeric liner in Type IV composite pressure vessels (CPVs) does not share the load, unlike those with metallic liners (Type III); hence, the composite layers share the entire load. The winding angles play a crucial role in tailoring the pressure-bearing properties of CPVs. This study investigated the effect of fiber winding angles on the hoop stress in Type IV CPVs using finite element (FE) analysis, and the advantage of multi-angle winding was realized. Stress analysis is vital to ensure that the vessel can withstand the intended operating conditions without undergoing failure. A series of finite element analyses (FEA) was carried out using the Abaqus FE simulation software to study the behavior of an anisotropic fiber-reinforced CPV with varied winding schemes. A stress analysis was performed, and various winding schemes were compared for different cases. The hoop stress in various configurations was documented to assess and compare various winding configurations