97 research outputs found
An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance
We prove an optimal lower bound on the randomized communication
complexity of the much-studied Gap-Hamming-Distance problem. As a consequence,
we obtain essentially optimal multi-pass space lower bounds in the data stream
model for a number of fundamental problems, including the estimation of
frequency moments.
The Gap-Hamming-Distance problem is a communication problem, wherein Alice
and Bob receive -bit strings and , respectively. They are promised
that the Hamming distance between and is either at least
or at most , and their goal is to decide which of these is the
case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS,
2003), it had been conjectured that the naive protocol, which uses bits of
communication, is asymptotically optimal. The conjecture was shown to be true
in several special cases, e.g., when the communication is deterministic, or
when the number of rounds of communication is limited.
The proof of our aforementioned result, which settles this conjecture fully,
is based on a new geometric statement regarding correlations in Gaussian space,
related to a result of C. Borell (1985). To prove this geometric statement, we
show that random projections of not-too-small sets in Gaussian space are close
to a mixture of translated normal variables
Recommended from our members
Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli
Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli
High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies
Cells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.National Human Genome Research Institute (U.S.) (Centers for Excellence in Genomics Science 1P50HG006193-01)Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Pioneer Award)Massachusetts Institute of Technology. William Asbjornsen Albert Memorial FellowshipXerox Fellowship Progra
A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response
Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.National Institutes of Health (U.S.) (New Innovator Award)Smith Family FoundationDamon Runyon Cancer Research FoundationSearle Scholars ProgramNational Institutes of Health (U.S.) (1R01CA119176-01
Semiconductor-based DNA sequencing of histone modification states
The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues
Left atrial size predicts long-term outcome after balloon mitral valvuloplasty
Background: The treatment of choice for severe rheumatic mitral stenosis is balloon mitral valvuloplasty (BMV). Numerous predictors of immediate and long-term procedural success have been described. The aims of this study were to describe our experience with BMV over the last decade and to evaluate predictors of long-term event-free survival.Â
Methods: Medical records were retrospectively analyzed of patients who underwent BMV between 2009 and 2021. The primary outcome was a composite endpoint of all-cause mortality, mitral valve replacement (MVR), and repeat BMV. Long-term event-free survival was estimated using the Kaplan-Meier curves. Logistic regression was used to create a multivariate model to assess pre-procedural predictors of the primary outcome.
Results: A total of 96 patients underwent BMV during the study period. The primary outcome occurred in 36 patients during 12-year follow-up: 1 (1%) patient underwent re-BMV, 28 (29%) had MVR, and 8 (8%) died. Overall event-free survival was 62% at 12 years. On multivariate analysis, pre-procedural left atrial volume index (LAVI) > 80 mL/m2 had a significant independent influence on event-free survival, as did previous mitral valve procedure and systolic pulmonary arterial pressure above 50 mmHg.
Conclusion: Despite being a relatively low-volume center, excellent short and long-term results were demonstrated, with event-free survival rates consistent with previous studies from high-volume centers. LAVI independently predicted long-term event-free survival
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface
The Intrinsic Substrate Specificity of the Human Tyrosine Kinome
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution
The Human Cell Atlas.
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community
Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses
Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data but have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We applied this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins, which enabled the construction of a network model consisting of 24 core regulators and 76 fine-tuners that help to explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly applicable, comprehensive, and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells
- …