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Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan
organisms as amechanism of coordinating tissue growth’. Multicellular eukaryotes
typically have more than 50 distinct protein Tyr kinases that catalyse the
phosphorylation of thousands of Tyr residues throughout the proteome! 3, How a
given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites

is only partially understood*”. Here we used combinatorial peptide arrays to profile
the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases
demonstrate considerable diversity in optimal patterns of residues surrounding

the site of phosphorylation, revealing the functional organization of the human Tyr
kinome by substrate motif preference. Using this information, Tyr kinases that are
most compatible with phosphorylating any Tyr site can be identified. Analysis of
mass spectrometry phosphoproteomic datasets using this compendium of kinase
specificities accurately identifies specific Tyr kinases that are dysregulated in cells
after stimulation with growth factors, treatment with anti-cancer drugs or expression
of oncogenic variants. Furthermore, the topology of known Tyr signalling networks
naturally emerged from a comparison of the sequence specificities of the Tyr kinases
and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the
intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged
from worms to humans, suggesting that the fidelity between Tyr kinases and their
protein substrate sequences has been maintained across hundreds of millions of years

of evolution.

Protein Tyrkinase signalling is anintegral part of cellular communica-
tionin metazoan organisms'. The human protein Tyr kinome comprises
afunctionally diverse family of signalling proteins that orchestrate
awide variety of biological processes, including cell migration, cell
survival, cell proliferation, nutrient uptake, response to pathogens
and almost all stages of embryonic development. Aberrant Tyr kinase
signalling is associated with human disease and is a frequent driver
of cancer® ™. Indeed, the first oncogene identified (SRC) was also the
first Tyrkinase to be discovered™?, and over 50 Tyr kinase inhibitors—
including Gleevec, one of the earliest successful molecular medicines—
are now FDA-approved cancer therapies™".

Classical phosphotyrosine signalling cascades are initiated at the cell
membrane through receptor Tyr kinases (RTKs)** or transmembrane
proteins with associated non-receptor Tyr kinases (nRTKs)* that phos-
phorylate nearby Tyr residues and create binding sites for protein inter-
action modules, most prominently including SRC homology 2 (SH2)

domains'®, that further propagate the signal. Well-characterized sig-
nalling cascades involve only asmall fraction of the more than 40,000
unique Tyr phosphorylation sites reported to date***. Accordingly,
our knowledge of Tyr kinase signalling just scratches the surface of
avastly more complex set of phosphorylation networks. Our ability to
define these networks is hampered by our limited understanding of
the rulesthat govern their organization, motivating an examination of
the phosphorylation site specificities of all Tyr kinases.

Motif specificity of Tyr kinases

To better understand how Tyr kinases connect to their downstream
effectors, we profiled the substrate specificity of the entire collection
of human Tyr kinases. Positional scanning peptide arrays (PSPA) were
used to profile the phosphorylation site motifs of the human Tyr kinome
using a combinatorial peptide library method that we previously
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Fig.1|Profiling optimal phosphorylation motifs reveals sequence
specificity of the human Tyr kinome. a, Experimental workflow for the PSPA
analysis and representative results. Z denotes fixed positions containing one
ofthe20 natural aminoacids, phosphorylated Thr (pT) or phosphorylated
Tyr (pY).X denotes unfixed positions containing randomized mixtures of all
natural amino acids except for Tyr and Cys. Autoradiograms (right) indicate

applied to the human serine/threonine (Ser/Thr) kinome? (Fig. 1a).
Using recombinant kinase preparations, we successfully obtained
phosphorylation site sequence motifs for all 78 catalytically active
conventional Tyr kinases? (Supplementary Fig.1and Supplementary
Tables 1and 2). These motifs were strongly concordant with those
obtained previously for a handful of kinases using different experi-
mental approaches’ (Extended Data Fig.1). Moreover, we defined Tyr
phosphorylation motifs for 15 Ser/Thr kinases that displayed conver-
gent Tyr phosphorylation activity, including known dual-specificity
kinases in the WEE, LIMK and NEK families®*%, as well as new Ser/Thr
kinases that we identified could also phosphorylate Tyr, including the

kinase preferences for specificamino acids at each position; darker spots
indicate preferred residues. b, Hierarchical clustering of 93 Tyr kinases on the
basis of theiramino acid motif selectivity determined from the quantified PSPA
data.Kinase namesare colour coded according to catalytic domain sequence
phylogeny (inset)*. The diagram in a was created using BioRender.

mitophagy kinase PINK]I, the cardiac kinase TNNI3K and the mitochon-
drial pyruvate dehydrogenase kinases (PDHKs)*.

Contrary to general belief, the Tyr kinases show a high degree of
selectivity for the amino acids near the phosphorylated Tyr residues
(Supplementary Fig. 1). To compare substrate specificities across
the human Tyr kinome, we performed hierarchical clustering using
quantified PSPA dataacross all positions within the peptide sequence
(Fig.1b). On the basis of this analysis, we categorized the kinome into
15 distinct clusters. These specificity groups spanned a continuum
from acidophilic kinases selecting negatively charged residues sur-
rounding their Tyr sites (including FAK (encoded by PTK2; cluster 1)
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and EGF receptor (EGFR; cluster 2)) to basophilic Tyr kinases that
select for positively charged amino acids—a phenomenon not gener-
ally observed in Tyr kinases. Basophilic kinases included ACK (clus-
ter 11) and discoidin domain receptor (cluster 12), both of which had
substrate-complementary negatively charged regions within their
catalytic domains (Extended Data Fig. 2). Between these two extremes,
the clusters included kinases recognizing various position-specific
combinations of hydrophobic, acidic, polar and small side-chain resi-
dues. Clustering by substrate specificity did not strictly recapitulate
kinase domain sequence phylogeny®?. In several cases, closely related
Tyrkinases unexpectedly diverged in specificity and phosphorylated
distinct sequence motifs (Fig. 1b). For example, nearest-neighbour
paralogues FAK and PYK2 recognized acidic and hydrophobic motif's,
respectively (Supplementary Fig.1). This observationis consistent with
their largely distinct sets of reported substrates and rationalizes the
inability of PYK2 expression to rescue the phenotypes of FAK-null cells,
although their distinct non-catalytic domains may also contribute to
these differences®®?. Similarly, the motif for JAK3 clustered far apart
in specificity space from its phylogenetic paralogues JAK1, JAK2 and
TYK2, consistent with its divergent biological roles®.

Wefound a greater diversity in the phosphorylation-site specificity
within the complete Tyr kinome than expected. Selectivity was predom-
inantly observedin positions -1to +3 relative to the phosphoacceptor
Tyr (Extended Data Fig. 3). Some preferences were common to essen-
tially all conventional Tyr kinases. For example, Tyr kinases generally
selected aliphatic hydrophobicresidues such asisoleucineinthe -1and
+3 positions (Extended Data Fig. 3a) while disfavouring serine at the -1
(Extended DataFig.3b) and glutamate at the +3 (Extended Data Fig. 3c)
positions. However, at each position, there were specific residues that
distinguished the various clusters from one another (Extended Data
Fig. 3d). Notably, a glutamate residue at position +1 broadly divided
thekinomeinto two large groups, with most nRTKs favouring and most
RTKsdisfavouring it (Extended DataFig. 3c). At other positions, specific
residue preferences uniquely identified a small number of individual
kinases. For example, only four kinases, including both ABL isoforms,
strongly selected prolinein the +3 position. Similarly, the ACK kinases
uniquely favour basicresidues at the -1 position (Extended DataFig. 3e).

Phosphopriming emerged as a prominent element of biochemical
specificity for many human Tyr kinases. This phenomenon, whereby a
kinase recognizes an already phosphorylated residuein the substrate,
can serve as a mechanism for signal integration, amplification and
cross-talk. While a few Ser/Thr and Tyr kinases have been established
to phosphorylate primed substrates®??, we found that more than half
of the conventional Tyr kinases (47 out of 78) selected a phosphoryl-
ated amino acid as their single most preferred residue across the entire
peptide array (Extended Data Fig. 4) and, for over 90% of them (72 of
the 78),aphosphorylated amino acid was the most favoured inat least
one position. The specific patterns of phosphopriming selection were
largely unique from those previously reported for Tyr kinases. For exam-
ple, SYK and ZAP70 strongly preferred phosphorylated residues at
several positions N-terminal to their target sites. These kinases func-
tionsequentially with other kinasesinimmunoreceptor signalling cas-
cades®®, and phosphopriming could help to enforce the proper order of
phosphorylation for specific substrates. Position-specific selectivity for
phosphorylated residues for several kinases could be rationalized based
onreported kinase domain crystal structures and could be ablated by
targeted mutagenesis (Extended Data Figs. 5 and 6). The biological
relevance of this phosphopriming selection remains to be explored but
is consistent with the abundance of multiply phosphorylated peptides
observed by mass spectrometry (MS) in phosphoproteomics datasets.

Scoring substrates for Tyr kinases

For the well-studied Tyr kinase ABL, we compared its motif specific-
ity as identified in our peptide arrays with the amino acid sequences
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Fig.2|The phosphorylation motifs for the human Tyr kinome enable
comparison of all kinases for Tyr phosphorylationsites. a, Schematic of the
substrate-scoring process. b-d, Scoring results and the substrate motiflogos
for Tyr6750onIRS2 and the insulin receptor kinase (b), Tyr705on STAT3 and
JAK1(c) and Tyr530 on SRC and C-terminal SRCkinase (CSK) (d). Red textinb-d
indicates known upstreamkinases.

surrounding the mapped sites of phosphorylation oniits cellular sub-
strates®. The ABL PSPA (Extended DataFig. 7a) showed a preference for
aliphaticresiduesat -1, alanineat+1and proline at the +3 positions, all
of which were recapitulated in established ABL substrates (Extended
DataFig.7b). We then broadened our analysis to the entire human Tyr
kinome. Using a previously described bioinformatic approach?®3+%,
position-specific scoring matrices (PSSMs) of normalized PSPA data
forall conventional Tyrkinases were used to score a curated set of 5,431
sites in the human Tyr phosphoproteome? plus an additional set of
1,884 Tyr phosphorylation sites identified using only low-throughput
approaches?® Subsequently, the scores were percentile-ranked for
each kinase, thereby nominating kinases best able to phosphorylate
each substrate (Fig. 2a and Supplementary Table 3). When we com-
pared our predictions to kinase-substrate pairs annotated from the
literature?, we observed that reported substrates were enrichedamong
highly ranking sites for their corresponding kinase. This enrichment
increased among kinase-substrate relationships that were indepen-
dently verified inmultiple studies (Extended DataFig. 7c). Notably, this
motif-based scoring approach correctly recapitulated the upstream
kinases for several of the earliest and best-established kinase-substrate
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Fig.3|Kinome-wide motifanalysis of phosphoproteomic dataidentifies
condition-dependent patterns of kinase regulation and dysregulation.

a, Schematic of the motif enrichment analysis of Tyr phosphoproteomics data.
FF, frequency factor.b-g, Results from published datasetsin cells after ligand
stimulation (b,c), oncogenic mutation (d,e) or targeted inhibition (f,g) of
Tyrkinases. b, NIH3T3 fibroblasts after 15 min treatment with 100 ng mI™
PDGF-BB¥. ¢, Cultured myotubes after treatment for 2 hwith 10 nM agrin®,

relationships, including those of the insulin, the JAK-STAT and SRC
signalling pathways (Fig. 2b-d).

By contrast, autophosphorylation sites on Tyr kinases displayed a
range of favourable and unfavourable motif scores as substrates of
their own kinase domains, probably due to the prevalence of induced
proximity. However, in such cases, these scores appeared to reflect
their observed kinetics of phosphoregulation. For example, the motif
scores correctly recapitulated the previously reported sequential order
of FGFR autophosphorylation sites* (Extended Data Fig. 8).

Finally, to demonstrate that the effects of specific amino acid sub-
stitutions on the suitability of kinase substrates could be predicted
by our PSSMs, motif-directed amino acid substitutions were made to
biologically derived substrate peptides of JAK1and ZAP70. These substi-
tutions were capable of altering the specificity of individual substrates
for their cognate kinasesin predictable ways, an effect that was driven
largely, but not completely, by alteration of the K\, values (Extended
DataFig. 9 and Supplementary Fig. 2).

Tyr kinase analysis of phosphoproteomics

This comprehensive motif collection for the Tyr kinome enables
examination of phosphoproteomic MS datasets for changes in the

d, Ba/F3 cells after expression of BCR-ABL fusion protein*. e, HEK293 cells
after expression of KIFSB-ALK fusion protein*2. f, PC-9 cells after treatment
for3 hwith1pMerlotinib**. g, H1781 cells after treatment for 3 hwith1 pM
afatinib**. Kinasesindicatedinbold inb-gare discussed in the main text. The
enrichmentsinb-gwere determined using one-sided exact Fisher’s tests. Fully
annotated versions of these plots are shownin Supplementary Fig.3.The
diagramsinaand d were created using BioRender.

activity level of every Tyrkinase in response to various perturbations.
Using anapproach similar to that previously reported for determining
enrichment of Ser/Thr kinase motifs in phosphoproteomic data®,
amino acid sequences of each phosphorylation site were scored and
percentile-ranked for every human Tyr kinase (Fig. 3a). Sets of sites
upregulated or downregulated in response to agiven treatment were
then used to infer which kinases were activated or suppressed under
those conditions.

Analysis of several published datasets using this pipeline identified
specifickinasesthatareactivated by various perturbations. Forexample,
after acute treatment of NIH3T3 cells with PDGF¥, the most upregulated
Tyr phosphorylation motifs corresponded to those of the PDGF receptor
isoforms (Fig. 3b); by contrast, in cultured myotubes stimulated with
the proteoglycan agrin®, the most upregulated motif corresponded
toits effector RTK, MuSK® (Fig. 3c). Similarly, when A549 cells were
stimulated with EGF*°, the EGFR recognition motif was among the most
upregulated (Extended DataFig.10a). Ineach case, the substrates driving
the identification of the regulated kinase motif included both known
kinase substrates (for example, PDGFR[ Tyr857 autophosphorylation,
MuSK phosphorylation of acetylcholine receptor subunit  Tyr390 and
EGFR phosphorylation of SHC Tyr349) and new putative substrates
that conform to the same motif but were not previously described
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Fig.4|Phosphorylation motifs for the human Tyr kinome enable broad
categorization of phosphosites and reveal functional correspondence with
the SH2-ome. a, Comprehensive scoring of the Tyr phosphoproteome by all Tyr
kinase motifs. b, Annotation of the human Tyr phosphoproteome by percentile
scores with allRTK and nRTK motifs. 7,315 known human phosphorylation
sites?> were sorted along the x axis according to the number of kinases that
score thesiteinthe 90th or higher percentile of substrates for that kinase.
Independently in each column of the heat map, kinases were ranked by score
for thatsubstrate. Examples of experimentally studied kinase-substrate
relationships are highlighted (yellow squares). ITAM, immunoreceptor
tyrosine-based activation motif. ¢, The overlap between phosphorylation

(Supplementary Table 4). These newly identified substrates both match
the kinase motif and are regulated when the kinase is perturbed, lend-
ing confidence that they arelikely to be directly phosphorylated by the
kinase of interest. When we used this approach to analyse the phospho-
proteome of cells expressing the oncogenic mutantkinases BCR-ABL*
orKIF5B-ALK*fusion proteins or the FGFR2 variant (FGFR2(A18))*, we
saw clear enrichment for the kinase motifs of each of these oncoproteins
(Fig.3d,eand Extended DataFig.10b). These observations suggest that
motif-based analysis canidentify the Tyr kinases that are most likely to
be driving oncogenic events in cancer cell lines.

Finally, the atlas of Tyr kinase motifs was used to analyse recently
published phosphoproteomics data on lung cancer cell lines treated
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motifs of kinases and pTyr recognition motifs of SH2 domains. d, Schematic of
the calculation of enrichment of kinase phosphorylation and SH2-domain-
binding motifs. e-g, Signalling schematics (top) and motifenrichment plots
(bottom) of SH2-binding PSSMs** for Tyr phosphorylationsites scored
accordingtothekinase PSSMs of ABL (e), PDGFR (f), LCK (g) and ZAP70 (g).
Inthe schematics, the arrows represent recruitment of the indicated protein’s
SH2 domain by theindicated kinases. The enrichmentsin e-gwere determined
using one-sided exact Fisher’s tests and corrected for multiple hypotheses
using the Benjamini-Hochberg method. Fully annotated versions of these plots
arepresented in Supplementary Fig. 4. The diagramsincand d were created
using BioRender.

with targeted inhibitors**. This approach identified the target kinases
as well as adaptive signalling responses reported to be induced after
drug treatment. For example, the ABL/SRC inhibitor dasatinib® caused
downregulation of the ABL phosphorylation site motif (Extended Data
Fig.10c). Treatment of a different cell line with the EGFR inhibitor erlo-
tinib resulted in the downregulation of sites matching the EGFR motif,
aswellasupregulation of sites preferred by BTK, akinase that hasarole
in resistance against EGFR inhibitors in that cell line*® (Fig. 3f). Simi-
larly, treatment of HER2' lung adenocarcinoma cells with the selective
inhibitor afatinib resulted in the downregulation of the HER2 motif
and upregulation of the motif of MET (Fig. 3g), a Tyr kinase that has
beenimplicated in afatinib resistance**5, These results show that the
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comprehensive collection of phosphorylation site motifsis sufficient
toidentify kinases of which the activities are either directly or indirectly
targeted by a specific drug.

Three classes of Tyr phosphosites

Annotation of the known human Tyr phosphoproteome??, based on
percentile scores for the human Tyr kinome, revealed three general
categories of substrates (Fig. 4a,b and Supplementary Table 3). One
category, encompassing about one-third (36%) of all phosphoryla-
tionsites, scored inthe 90th percentile or better for six or more con-
ventional Tyr kinases, indicating predicted favourability to a broad
spectrumof kinases. These include phosphorylation events previously
knownto be generated by anumber of different upstream kinases and
on proteins recognized by a number of SH2 domains, constituting
points of convergence in signalling networks. A second category,
comprising about another third (34%) of reported phosphorylation
sites, instead closely matched the optimal motifs of only one to five
conventional Tyr kinases, indicating substantial exclusivity in kinase—
substrate relationships. Examples of phosphorylation sites in this
exclusive categoryincluded carefully orchestrated regulatory events
inimmune cells as well as canonical kinase-specific phosphorylations.
Finally, nearly one-third (31%) of all mapped Tyr phosphorylation
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kinase names are denoted with asterisks and colour coded according to their
phylogenetic relationships with human Tyr kinase families (inset). Clusters
containing distinct orthologous groups are highlighted. The diagraminawas
created using BioRender.

sites poorly matched the optimal motifs of every conventional Tyr
kinase. Thisisinsharp contrast to the Ser/Thr phosphoproteome, in
which 99% of sites are well matched to at least one Ser/Thr kinase®.
Among this class of substrates are the C-terminal phosphorylation
sites of SRC-family kinases. Phosphorylation at these sites involves
a docking surface with the upstream kinase CSK, which presuma-
bly overrides the requirement for an optimal phosphorylation site
sequence®. Nonetheless, the sequence around the phosphorylation
siteis a better match for the CSK phosphorylation motif than that of
any other conventional Tyr kinase (Fig. 2d). Notably, a subset of the
suboptimal sites were in the 90th percentile of favourability for one or
more of the 15 non-canonical Tyr kinases® (clusters 14 and 15in Fig. 1b
and Supplementary Table 3). For example, the known regulatory site
Tyr301 on the mitochondrial pyruvate dehydrogenase complex E1
alphasubunit PDHA has beenrepeatedly observed to be phosphoryl-
ated in cells, but its cognate kinase has not been identified>*°. This
substrate is predicted to be a suitable match for isoforms of PDHK
(Extended DataFig.10d,e), which are canonically believed to be Ser/
Thr kinases, but for which our data demonstrate Tyr kinase activity
(Fig.1band Supplementary Fig.1). Notably, this Tyr site on PDHA, along
with the presence of the kinase PDHK, is conserved in Saccharomyces
cerevisiae, an organism that predates the evolutionary emergence of
Tyr-exclusive kinases.
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Motif overlap with pTyr-binding proteins

Tyr kinase signalling networks frequently involve the recruitment of
multiprotein complexes through modular domains that recognize
and bind to the amino acid sequence surrounding a central pTyr
residue'®, Overlap between kinase phosphorylation site motifs and
phosphotyrosine-binding adaptor proteins can provide insights into
the organization of these signalling pathways®'. As an example, SH2
domains comprise alarge group of adaptor proteins that are selec-
tive for amino acids C-terminal to their pTyr sites and display great
diversity in their binding motifs™*2. We systematically examined the
relationships between our compendium of Tyr kinase motifsand a
previously published collection of SH2-domain motif specificities™
(Fig.4c,dand Supplementary Table 5). The overlaps between Tyr kinase
and SH2 specificities identify known downstream effectors, explain
positive-feedback loops and rationalize the sequential information
flow of phosphorylation cascades®** (Fig. 4e-g).

Evolution conserves kinase specificity

The biological functions of several Tyr kinases are reportedly con-
served throughout the animal kingdom®®, suggesting maintenance
of at least a subset of their downstream signalling pathways. Twelve
kinases from the worm species Caenorhabditis elegans, selected as
orthologues of disparate major phylogenetic branches of the human
Tyrkinome, were profiled with PSPAs and their target motifs compared
to those of the corresponding human kinases. In nearly all cases, the
biochemical specificity of the nematode kinases appeared similar
to that of their human counterparts (Fig. 5a, Supplementary Fig. 1
and Supplementary Table 6), despite hundreds of millions of years
of evolutionary divergence. Hierarchical clustering of the human
and nematode Tyr kinase substrate motifs reorganized the kinome
into orthologous groups in which most of the human and nematode
orthologues were closest neighbours (Fig. 5b), reflecting evolutionary
conservation of the features that distinguish the phosphorylation-site
specificities of the Tyr kinase subgroups. This strong conservation
of kinase specificity across the animal kingdom probably reflects
the necessity of preserving specific roles for kinases and substrate
sequences that cannot be independently evolved while maintaining
organismal fitness®’.

Discussion

Here we describe the amino acid sequence specificity for the com-
plete set of human Tyr kinases. The various catalytic domains in the
human Tyr kinome exhibit distinct substrate specificities, albeit to a
lesser degree than that seen among Ser/Thr kinases. This difference is
probably aconsequence of the more recent divergence of Tyr kinases
from the ancestral Ser/Thr kinases®, which have existed since before
the separation of bacteria, archaea and eukaryotes. In addition to the
78 canonical human RTK and nRTKs?, previous research by us and
othersrevealed 15 atypical kinases that are phylogenetically classified
among the Ser/Thr kinases but that also have Tyr phosphorylation
activity’®*?> %, Here we show that these atypical kinases have motif spe-
cificities that cluster separately from those of the canonical Tyr kinases,
reflecting their divergent evolutionary origin as Ser/Thr kinases.

The comprehensive nature of this collection of motif specificities
enables any Tyr site to be assessed for its suitability as a substrate of
each Tyr kinase, facilitating predictions as to which kinase or kinases
might directly phosphorylate it. These predictions correctly iden-
tify known substrates of kinases, nominate new putative substrates
and identify the kinases perturbed in a variety of phosphoproteomic
MS experiments. However, we caution against overinterpreting the
single top-scored or top-ranked kinases generated in these analyses.
Motif-based predictions such as these are most reliable for identifying

1180 | Nature | Vol 629 | 30 May 2024

subsets of compatible kinases (frequently, phylogenetically related
kinases). Other contributing factors such astissue specificity and sub-
cellular localization may determine which specific kinase is directly
responsible for phosphorylating a given site*. Nonetheless, these pre-
dictions are effective atidentifying individual kinases when applied in
aggregate tolarge datasets, presumably by the accumulated evidence
of many putative sites. As with Ser/Thr-kinase-motif-based predictions,
our computational approaches do not consider the contributions of
interpositional contacts within the substrate peptides®, and incor-
porating such information is likely to further improve predictions®.

Notably, over 30% of the mapped human Tyr phosphoproteome
comprisessites that are poorly matched by the optimal motif specificity
of canonical Tyr kinases. These sites cannot be uniformly explained by
high proteinabundance, reduced site stoichiometry, low evolutionary
conservation, disease association, autophosphorylation, suitability as
anoncanonical kinase substrate, or the presence of Ser, Thr, Tyror Lys
residues that might drive a phospho- or acetyl-mediated priming rela-
tionship. Phosphorylation of such suboptimal substrate sequences may
requireinduced proximity, such as RTK dimerization or SH2-domain-
pTyrinteractions®.

Our characterization of phosphopriming selection by Tyr kinases
and previously by Ser/Thr kinases® provides insights into the order
of phosphorylation events in which adjacent phosphoresidues are
observed. We found that the majority of Tyr kinases select a phos-
phorylated residue, most often pTyr at the -1, +1 or +2 substrate posi-
tions, as their most preferred residue in the peptide array. Conversely,
positioning a phosphoresidue three positions C-terminal (+3 posi-
tion) to a Tyr residue hinders phosphorylation by most kinases as a
‘phospho-obstruction’mechanism (Extended DataFig. 4). Finally, sev-
eral Tyrkinases select pThrand presumably pSer at positions in which
Thr and Ser are disfavoured, indicating that Ser/Thr kinases have the
ability to prime otherwise unfavourable Tyr sites for phosphorylation.

Relative to Tyr phosphorylation, far lessis understood about the rules
governing the dephosphorylation of pTyr sitesin cells®®. Determining
substrate correspondence (that is, shared target sites) between specific
protein Tyr phosphatases and kinases and understanding how their
counter-regulatory activities collectively shape the Tyr phosphopro-
teome are important questions for future studies.

The complete collections of Tyr kinase motifs reported here and Ser/
Thrkinase motifs reported previously?® enable one to infer kinases of
which the activity changes in comparative phosphoproteomics data-
sets. Given theincreasing abundance of such datasets, including those
ofindividual humansamples, this compendium of kinase specificities
should facilitate the development of personalized therapies in the
clinic.
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Methods

Plasmids

For expression and purification from bacteria, DNA sequences for the
human Tyr kinases His,~PKMYT1 (full length), BMPR2-His, (amino
acids 172-504)%, His,-TESK1 (amino acids 1-345) and the C. elegans
Tyrkinase His,~ABL1 (amino acids 297-584) were codon-optimized for
Escherichia coli expression using the GeneSmart prediction software
(Genscript). Optimized coding sequences were synthesized as gBlocks
(Integrated DNA Technologies) carrying 16 bp overhangs at the 5’ and
3’ ends to facilitate in-fusion cloning (Clontech) into pET expression
vectors (EMD Millipore).

Coding sequences for 12 C. elegans kinases were PCR-amplified out
of acDNAlibrary (provided as a gift from B. Emerling and M. Hansen).
PCR products for src-1 (full length), csk-1 (full length) and sid-3 (amino
acids 93-498) were subcloned into the pcDNA 3.4 mammalian expres-
sion vector for expression in Expi293 cells. PCR products for daf-2
(amino acids 1234-end), let-23 (amino acids 848-end), egl-15 (amino
acids 550-end), cam-1 (amino acids 493-end), ddr-2 (amino acids 407~
end), ver-3 (amino acids 788-end), scd-2 (amino acids 930-end) and
vab-1 (amino acids 582-end) were subcloned into the pFastBac Dual
baculoviral expression vector for expression in Sf9 cells.

The coding sequence for CSFIR (amino acids 539-end) was PCR-
amplified out of apTag mammalian expression vector construct (a gift
from M. E. Ross, C. Wang, V. Aguiar-Pulido and S. Kholmanskikh) and
subcloned into pFastbacDual.

Coding sequences for EGFR (amino acids 668-end), IGFIR (amino
acids 960-end) and FAK (full length) were PCR-amplified out of con-
structs obtained from Addgene (82906, 98344 and 23902, respec-
tively), and subclonedinto pcDNA 3.4. Amino acid substitutionsin the
kinase domains were generated using the QuikChange I Site-Directed
Mutagenesis kit (Agilent).

Expression and purification from bacteria

Transformations were performed with BL21 Star cells (Thermo Fisher
Scientific) unless specified otherwise. Antibiotic concentrations used
wereas follows: carbenicillin (100 mg I™"), kanamycin (50 mg I™%), spectin-
omycin (25 mg ™) and chloramphenicol (25 mg I in ethanol, prepared
fresh). Transformed cells were grown in 11 Terrific broth by shaking at
190 rpmat 37 °Cuntil the optical density (1=600 nm) reached 0.7-0.8,
at which point 1 mM IPTG was added to induce expression. The cells
were thentransferred to arefrigerated shaker and shaken at 220 rpmat
18 °Cfor16-20 h. Cells were then centrifuged at 6,000g, and the pellets
were snap-frozenin liquid nitrogen and stored at —80 °C.

All of the steps in the protein purification were performed at 4 °C.
Cell pellets were solubilized in lysis buffer (the contents of which are
described below), using a spatula to disperse, and lysed by probe
sonication. The lysates were centrifuged at 20,000g for 1 h, and the
supernatants were combined with affinity purification resin, nickel NTA
(Qiagen) or glutathione Sepharose (GE Health) that had been rinsed
in base buffer. The supernatant-bead slurries were agitated using a
rotisserie for 30 min. Resin was washed with 11base buffer and eluted
in10 bed volumes of elution buffer. Eluted proteins were concentrated
using the Ultra Centrifugal Filter Units (Amicon), supplemented with
1mM DTT and 25% glycerol, and snap-frozen in liquid nitrogen and
stored at —80 °C.

Standard lysis buffer was 50 mM Tris pH 8.0,100 mM NacCl, 2 mM
MgCl,, 2% glycerol, HALT EDTA-free phosphatase and protease inhibitor
cocktail (Life technologies), 5 mM -mercaptoethanol and 1-3 grams
of lysozyme (Sigma-Aldrich). Standard base buffer was 50 mM Tris
pH 8.0,100 mM NaCl, 50 mM imidazole, 2 mM MgCl, and 2% glycerol.
Standard wash buffer was 50 mM Tris pH 8.0, 500 mM NacCl, 50 mM
imidazole,2 mM MgCl,and 2% glycerol. Polyhistidine-tag elution buffer
was 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl,, 2% glycerol and
350 mMimidazole.

PDHK1, PDHK3 and PDHK4 were co-expressed with Gro-EL/Gro-ES
protein chaperones®** and purified with the following buffers: lysis
buffer (100 mM potassium phosphate pH 7.5,10 mM L-arginine (stock
pH-adjusted to 7.5), 500 mM KCI, 0.1 mM EDTA, 0.1 mM EGTA, 0.2%
Triton X-100, lysozyme), wash buffer (50 mM potassium phosphate
pH 7.5,10 mM arginine, 500 mM NacCl, 0.1% Triton X-100,2 mM MgCl,),
and elution buffer (25 mM Tris pH 7.5,120 mM KCl, 0.02% Tween-20,
50 mM arginine, 350 mM imidazole).

PKMYT1was co-expressed with untagged HSP90-CDC37 complex®,

Protein expressionininsectcells

Spodoptera frugiperda (5f9) cells (Thermo Fisher Scientific) were
cultured in Grace’s Insect Cell Culture Medium containing 10% fetal
bovine serum (Thermo Fisher Scientific) and shaken at 120 rpm at
27 °Cin a humidified incubator. According to protocols provided in
the Bac-to-Bac Baculovirus Expression System manual (Thermo Fisher
Scientific), Sf9 cells underwent infection with the recombinant bacu-
loviruses derived from the pFastbac constructs described above. At
3 days after transfection, the cells were centrifuged at 500g for 5 min,
snap-frozeninliquid nitrogen and stored at —80 °C.

Protein expressionin mammalian cells

Expi293 cells (Thermo Fisher Scientific) were cultured in 500 ml
Expi293 Expression Medium (Thermo Fisher Scientific) in 2 | spinner
flasks on a magnetic stirring platform at 100 rcf at 36.8 °C under 8%
CO,. For transfection, 500 pg of expression constructs were diluted
in Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific).
ExpiFectamine 293 Reagent (Thermo Fisher Scientific) was diluted with
Opti-MEM separately and then combined with diluted plasmid DNA
for 10 min at room temperature. The mixture was then transferred to
the cells (3 x 10® cells per ml) and stirred. Then, 20 h after transfection,
ExpiFectamine 293 Transfection Enhancer 1and Enhancer 2 (Thermo
Fisher Scientific) were added to the cells. Then, 2 days later, the cells
were centrifuged at 300g for 5 min, snap-frozeninliquid nitrogen and
stored at =80 °C (3 days after transfection).

Purification from insect and mammalian cells
All steps of protein purification were performed at 4 °C. Cell pellets
were solubilized inlysis buffer, using aspatula to disperse, and lysed by
Dounce homogenization (20 strokes). The lysates were centrifuged at
100,000gfor1hand the supernatants were combined with affinity puri-
ficationresin, nickel NTA (Qiagen), glutathione Sepharose (GE Health)
or Anti-Flag M2 affinity gel (Sigma-Aldrich), and agitated on arotisserie
for 30 min (nickel and glutathione beads) for1h (anti-Flag beads). The
resinwas washed with11base buffer and eluted in 10 bed volumes of elu-
tion buffer. For elution of Flag-tagged proteins, beads were immersed
in elution buffer (0.15 pg mi™ 3x Flag peptide (Sigma-Aldrich)) and
agitated on rotisserie for 1 h before elution. Th eluted proteins were
concentrated using Ultra Centrifugal Filter Units (Amicon), supple-
mented with1mM DTT and 25% glycerol, and snap-frozen in liquid
nitrogen and stored at —80 °C. Standard lysis buffer was 50 mM Tris
pH 8.0,150 mM NaCl, 2 mM MgCl,, 5% glycerol, 1% Triton X-100, 5 mM
B-mercaptoethanoland HALT protease inhibitors. Standard base buffer
was 50 mM Tris pH 8.0,100 mM NaCl, 2 mM MgCl, and 2% glycerol.
Standard wash buffer was 50 mM Tris pH 8.0, 500 mM NaCl,2 mM MgCl,
and 2% glycerol. Elution buffer was 50 mM Tris pH 8.0, 100 mM NacCl,
2 mMMgCl,and 2% glycerol. Glutathione (10 mM) pH 8.0 was included
for GST affinity purifications. Imidazole (250 mM) was included for
polyhistidine affinity purifications. 3x Flag peptide (0.15 pg ml™) was
included for Flag affinity purifications.

Recombinantactive SRMS was agift from D. Gurbaniand K. Westover®*,

PSPA experiments
Eachrecombinantkinase was distributed across a 384-well plate, mixed
with acustomized Tyr peptide substrate library (Anaspec) in solution



phase and 50 uM ATP (50 pCi ml™y-*2P-ATP, Perkin-Elmer), and incu-
bated for 90 min. Assay conditions® for each kinase are described
in Supplementary Table 1. Each well contains a mixture of peptides
with a centralized Tyr phospho-acceptor and one fixed amino acid in
an otherwise randomized background mixture of all natural amino
acids except Tyr and Cys. All 20 natural amino acids, plus two PTM
residues (pThr and pTyr), were substituted into positions =5 to +5 to
generate 220 unique peptide mixtures (22 amino acids x 10 fixed posi-
tions). All peptides were amidated at their C termini. N-and C-terminal
flanking sequences of all peptides were G-A-[phosphorylation site
sequence]-A-G-K-K(biotin)-NH,, where K(biotin) represents a lysine
sidechain modified with an aminohexanoic acid spacer attached
to biotin. After the phosphorylation reactions, peptides were spot-
ted onto Streptavidin-conjugated membranes (Promega, V2861),
where they associated through their C-terminal biotinylations. The
membranes were rinsed to remove free ATP and kinase and imaged
using the Typhoon FLA 7000 phosphorimager (GE). Raw data (GEL
file) was quantified using ImageQuant (GE). Images of the raw data
are presented in Supplementary Fig. 1. For 24 kinases, the +5 position
peptides were profiled in separate experiments, and their results are
shown as separate images in Supplementary Fig. 1. Dual-specificity
kinases (NEK10, PINK1, BMPR2, LIMK]1, LIMK2, TESK1, MYT1, MKK4,
MKK6, MKK7, PDHK1, PDHK3 and PDHK4) and a subset of the canoni-
cal kinases (IRR, JAK3, MSTIR (RON), TXK and VEGFR1) were profiled
using a second customized Tyr peptide substrate library lacking Ser,
Thr, Tyr and Cys, at randomized positions.

Together, substrate motifs were obtained fromatotal of 109 distinct
kinases, comprising 92 humankinases, 12 Caenorhabditis eleganskinase
orthologues, 1 arthropod Tribolium castaneum kinase orthologue
(PINK1) and 4 phosphopriming selection mutant kinases (Extended
DataFig.5and 6).

Kinetic analysis

Peptide phosphorylationassays to determine the kinetic parameters of
JAK1and ZAP70 were performed at room temperature in 20 pl contain-
ingthe correspondingkinase reaction buffer (Supplementary Table1).
Eachreaction contained 100 ng of kinases and 500 uM, 250 puM, 50 uM
or 25 uM of biotinylated substrate peptide (Anaspec). Then, 2 pl of
eachreactionwas transferred to 18 pl quenching buffer (500 mM EDTA
pH8.0)at0,3,6,9,12,and 15 min. A total of 1.5 pl of quenched reac-
tion mixtures was spotted onto Streptavidin-conjugated membranes
(Promega, V2861). The membranes were rinsed to remove free ATP and
kinase and imaged alongside ATP standards using the Typhoon FLA
7000 phosphorimager (GE) and quantified using ImageQuant (GE).
From these kinase assays, the K, and V,,,,, values were determined
by curve fitting using the Michaelis-Menten equation (GraphPad
Prismv.10.1).

Matrix processing

The raw spot-intensity matrices of the canonical kinases and the
non-canonical kinases TNNI3K and WEE1 were column-normalized
(at each position) by the sum of the 18 randomized amino acids
(excluding Tyr and Cys) to yield PSSMs. The raw spot-intensity matri-
ces of all other non-canonical kinases and the canonical kinases IRR,
JAK3, MSTIR (RON), TXK and VEGFR1 were normalized by the sum
of the 16 randomized amino acids (excluding Ser, Thr, Tyr and Cys),
corresponding to the uniquely customized peptide library that was
used to profile these kinases. The cysteine row was scaled to fix its
median as 1/18 for the 18 amino acid library or 1/16 for the 16 amino
acid library, depending on the library used as described above. The
Tyr values in each position were set to be identical to the phenyla-
lanine value at that position. For kinases displaying dual specificity
(PDHK1, PDHK4, BMPR2, LIMK2, MKK7 and PINK1), the serine and
threonine values in each position were set to be the median of that
position.

Substrate scoring
For scoring substrates, the PSSM values of the corresponding amino
acidsinthe corresponding positions were scaled by 18 or 16, depending
onthelibrary used, to calculate the selectivity of thatamino acid rela-
tive to the mean randomized amino acid, which has a value of 1. These
values are rounded to the nearest10,000th and multiplied to generate a
raw score for each kinase-substrate pair?>*** (Supplementary Note1).
To calculate the percentile score of a substrate for a given kinase, we
first computed the a priorireference score distribution of that kinase
PSSM by scoring a reference Tyr phosphoproteome comprising 5,431
identified sites with localization probability above 0.75 (ref. 3), using
the method discussed above (Fig. 2a). The percentile score of akinase—
substrate pairis defined as the percentile ranking of the substrate within
the reference score distribution for the kinase.

Forscores displayed at theKinase Library websites, we log,-transform
and sum PSSM values such that a substrate preferred over random has
apositive value and a substrate selected against has anegative value.

Matrix clustering

Thedendrogramsin Figs.1and 5were generated using the normalized
matrices with allthe unmodified amino acids excluding Tyr (whichwas
fixed asidentical to phenylalanine), as well as phosphothreonine and
phosphotyrosine. Linkage matrices were computed using the SciPy
packageinPython (v.3.7.6), using the ‘ward’ method. The results were
converted to the Newick tree format and plotted using FigTree (v.1.4.4).

Comprehensive analysis of substrate sequence selectivity

In Extended DataFigs. 3 and 4d,e, for each of the 78 canonical human
Tyr kinases, the selectivities at each position for each of the 20 natu-
ral amino acids, relative to a mixed pool of natural amino acids, were
calculated as described above. These values were log-transformed
and plotted in v.4.2.3 of R® using v.3.4.2 of the package ggplot2°°.
Asaproxy for the variability amongkinases in degree of selectivity, the
s.d. of log-transformed selectivity values was calculated and plotted
for each amino acid at each position using the same software.

Comparison to literature PSSMs

The log,-enrichment of each amino acid at each position among
phosphorylated peptides versus unphosphorylated library, using the
subset of the library containing only one Tyr residue, was calculated
previously’ for each of the five kinases screened against a degenerate
library. The Pearson correlation coefficient ¢ of these quantifications
was calculated against the log, selectivity for each amino acid at each
position in all 78 canonical human Tyr kinases screened here. Shown
in Extended Data Fig. 1are the correlation coefficients sorted from
lowest to highest with each of the five kinases screened’, with the five
best-matching kinase selectivities in our study explicitly labelled in
each plot.

Kinase enrichment analysis

The single phosphorylation sites (not including multiply-
phosphorylated peptides) in the analysed phosphoproteomics stud-
ies were scored for each of the characterized canonical kinases (78
Tyr kinases), and their ranks in the reference phosphoproteome
score distributions were determined as described above. For every
non-duplicated, singly phosphorylated site, kinases that ranked within
the top eight kinases for the Tyr kinases were considered to be bio-
chemically favoured kinases for that phosphorylation site. For assessing
kinase motif enrichment in phosphoproteomics datasets, we compared
the percentage of phosphorylationsites for which each kinase was pre-
dictedamong the upregulated/downregulated (increased/decreased,
respectively) phosphorylation sites (sites with |log,[fold change]|
equaltoorgreater than our log[fold change] threshold of 1), versus the
percentage of biochemically favoured phosphorylation sites for that
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kinase within the set of unregulated (unchanged) sites in this study
(sites with |log,[fold change]| less than our log,[fold change] threshold
of 1). Contingency tables were corrected using Haldane correction
(adding 0.5 to the cases with zero in one of the counts). Statistical sig-
nificance was determined using aone-sided Fisher’s exact test. Kinases
that weresignificant (P< 0.05) for both upregulated and downregulated
analysis were excluded from the downstream analysis. Then, for each
kinase, the direction of most significant enrichment (upregulated or
downregulated) was selected based on the P values and presented in
the volcano plots.

Sequence logos

Sequence logos were generated using the Logomaker package in
Python®. For individual kinases, the normalized matrix was used, where
the height of every letter is the ratio of its value to the median value for
that position. The Tyr height in the central position (position zero) was
set to the maximal height in the peripheral positions. For clustered
groups of kinases, the average matrix was calculated and presented
asasequencelogo as described above.

Comparative analyses between amino acids in the kinase
domains and their substrate specificities

For Extended Data Fig. 6, kinases were sorted by the +1 pTyr signal in
their PSSM. For the sequence logo, kinase domains of the 78 canonical
Tyrkinases were obtained from previously aligned kinase sequences®®.
The alignments to residue Ala920 in EGFR (Protein Data Bank (PDB):
5CZH) were obtained for each kinase, and the frequencies of amino
acids were calculated and plotted.

Known kinase-substrate pairs

Experimentally validated kinase-substrate relationships were obtained
from PhosphoSitePlus (April 2022)%. The number of reports for each
pair was determined by the sum of the in vivo and in vitro reports.

Performance analysis

Experimentally validated kinase-substrate relationships were obtained
from PhosphoSitePlus®. We selected Tyr sites on human proteins and
filtered out sites with an additional phosphorylated residue within 5
amino acids or sites with reported upstream kinase not characterized
in this study. The number of reports for each pair was determined by
the sum of theinvivo and in vitro reports.

SH2-binding specificity matrix processing

The raw binding matrices of 76 SH2 domains were obtained from previ-
ously published work®. Values of zero were replaced with the minimal
value at that position. Matrices were then position-normalized by the
sum of the 19 randomized amino acids (excluding cysteine), to yield
PSSMs**. The cysteine specificity was then added and set to 1/19 to
represent neutral specificity asitwas notincluded in the original data.
The PSSM for PIK3R2_C was also used to represent PIK3R3_C.

SH2 enrichment for different kinase motif's

First, we scored the Tyr phosphoproteome? with each kinase motif
and, for each, divided the data into favoured sites (top 20%), neutral
sites (middle 60%) and disfavoured sites (bottom 20%). SH2 enrich-
ment was then calculated similarly to the kinase enrichment process
described above. SH2-binding PSSMs* (Supplementary Table 5) that
ranked within the top eight SH2s were considered to be biochemically
favoured SH2s for binding that phosphorylation site. For assessing
SH2 motif enrichment in the Tyr phosphoproteome distribution for
agivenkinase, we compared the percentage of phosphorylationsites
for which each SH2 PSSM was predicted among the favoured/disfa-
voured phosphorylationites (top 20% and bottom 20%, respectively)
versus the percentage of biochemically favoured phosphorylation
sites for that SH2 within the set of neutral phosphorylation sites in

this study (middle 60%). Contingency tables were corrected using
Haldane correction (adding 0.5 to the cases with zero in one of the
counts). Statistical significance was determined using one-sided
Fisher’s exact test, and the corresponding P values were adjusted
using the Benjamini-Hochberg procedure. Finally, for every SH2
domain, the most significant direction of enrichment (favoured or
disfavoured) was selected based on the adjusted Pvalue and presented
inthe volcano plots.

Illustrations

Experimental schema and illustrative models were generated using
BioRender (https://biorender.com/). Kinome tree images were gen-
erated and modified using Coral (http://phanstiel-lab.med.unc.edu/
CORAL/)®. Structuralillustrations were generated with ChimeraX™ or
PYMOL".. Generic kinase domains in Figs. 1and 4 and Extended Data
Fig.7:INSR (PDB: 1IRK)". Kinase and substrate structures in Fig. 2: INSR
(structural chimera of PDB 1IRK (ref. 72) and AlphaFold AF-P06213-F1
(https://alphafold.ebi.ac.uk/entry/P06213) (ref.73)), IRS1 (AlphaFold:
AF-P35568-F1) (https://alphafold.ebi.ac.uk/entry/P35568)7, JAK1 (PDB:
7T6F)™, STAT1(PDB:1BF5)” and CSK-SRC complex (PDB:3D7T)*.RTK
in Fig. 3: EGFR transmembrane domain (PDB: 2M20)” and ECD (PDB:
3NJP)”. Kinase-drug complex in Fig. 3: ABL-imatinib (PDB: 1IEP)’%,
Generic SH2 domain structures in Fig. 4: SRC (PDB: 1SHB)”. Kinase
domain of DDR2 in Extended Data Fig. 2 (AlphaFold: AF-Q16832-K1A,
based on https://alphafold.ebi.ac.uk/entry/Q16832)%.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data generated (raw files in Supplementary Tables 2 and 6) and
analysed in this study are provided in this paper. All plasmids gener-
ated in this study are available on request. Source data are provided
with this paper.

Code availability

We have developed two slightly different approaches to determine the
most likely protein kinase to phosphorylate a givensite. We encourage
thereadertoexplore both websites (https://kinase-library.phosphosite.
org and https://kinase-library.mit.edu).
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Correlation with bacterial
peptide display PSSM

Extended DataFig.1|Correlationbetween Tyrkinase PSSMs derived from
PSPA assays and bacterial peptide display. Pearson correlation coefficients
for position specific scoring matrices (PSSMs) obtained previously for five
kinases screened by bacterial display’ were calculated against the PSSMs of
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the 78 conventional RTKs and nRTKs obtained in this study. Correlation
coefficients are sorted from lowest to highest witheach of the 5 kinases
screened by bacterial display with the S5best-matching kinase selectivitiesin
our study explicitly labelled.



Extended DataFig.2|Structural models ofkinase-substrate complexes.
a, EGFR (PDB:2GS6) in complex with synthetic peptide. Dotted greencircle
shows positive surface potential in the vicinity of the -1residue. b, Synthetic
peptide fromits complex with EGFR (PDB: 2GS6) modelled onto ACK (PDB:
1U46). Dotted green circle shows negative surface potential in the vicinity of
the-1residue.c,INSR (PDB:1IR3) in complex with synthetic peptide. Dotted
green circleshows positive surface potential in the vicinity of the substrate

N-terminal residues. d, Synthetic peptide fromits complex with INSR (PDB:
1IR3) modelled onto DDR2 (PDB: AF-Q16832-K1A)*°. Dotted green circle shows
negative surface potentialin the vicinity of the substrate N-terminal residues.
Surfaceelectrostatics are represented with Coulombic potential values were
computed in ChimeraX and represented by scale bars (kcal/mol-e). In all panels,
“Tyr” represents the site of phosphorylation and “-1” indicates the residue
directly to the N-terminal side of the site of phosphorylation.
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Extended DataFig.5|Substrate phosphopriming preferences by Tyrkinases
aremediated by complementary basicresiduesin their catalytic domains.
a, Top, structural modelling of the interactionbetween FAK and substrate
peptides. Spatial alignment of FAK’s kinase domain structure (PDB: 6 TY4) with
the EPHB2-substrate peptide complex (PDB: 3FXX) where FAK and the substrate
peptide are specifically showntoillustrate the role of Lys621in the recognition
of pThratthe-1substrate positionby FAK and, bottom, the corresponding
experimental validation in PSPA assays. b, Top, spatial alignment of FAK’s kinase
domainstructure (PDB: 6TY4) with the EPHB2-substrate peptide complex (PDB:
3FXX), asperformedina, nowillustrating the close proximity between pTyr at
the+2substrate positionand Lys581and Lys583 of FAK and, bottom, the
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corresponding experimental validation. ¢, Top, structural modelling of the
INSR-peptide substrate complex (PDB: 1IR3), highlighting the residuesinits
catalyticdomain that recognize pTyr at the -1 position onits substrates and,
bottom, the corresponding experimental validation with its paralog IGF1R.
INSRresidues Lys1112 and Argl116 are equivalent to the IGF1R residues Arg1084
and Lys1088, respectively, in theirhomologous alignments®®. Surface electrostatics
arerepresented with Coulombic potential values were computed in ChimeraX
andrepresented by scale bars (kcal/mol-e). Amino acid sidechains of Tyr
phosphoacceptors, residues at substrate priming positions and indicated
complementary residuesin kinase domain are shown in ball-and-stick
representation.


https://doi.org/10.2210/pdb6TY4/pdb
https://doi.org/10.2210/pdb3FXX/pdb
https://doi.org/10.2210/pdb6TY4/pdb
https://doi.org/10.2210/pdb3FXX/pdb
https://doi.org/10.2210/pdb1IR3/pdb

Extended DataFig. 6 |Stericaccommodation ofa+1pTyrresidue by EGFR.
a, Structural modelling of EGFR’s recognition of +1 pTyr (PDB: 5CZH). Side
chains of Ala920 on EGFR and +1 pTyron the peptide substrate asshownin
spacefill representation. Sidechain of Tyr phosphoacceptorisshownin

a Recognition of +1 pTyr

substrate
+1 pTyr

Ala920

sidechain
b
4
Log-selectivity
of pTyr at +1 3
position in 2

peptide arrays

o -
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—

—

—

—

—

—

—

—

-

-

-

-

-

-

-

-

-

-

-

n

"

log,(+1 pTyr value)

Amino acid that

aligns with &
EGFR Ala920 in g 0.
kinome-wide 3
. o
multiple o
sequence g,
alignments

Cc EGFR wt EGFR (A920N)
-5-4-3-2-1+1+2+3+4 5-4-3-2-1+1+2+3+4
P ¥ L P
G . G
A . A
C sAn C
s |- . W S
T . s & T
V] ‘e \Y; -
| IR ] | . .
Li®® 1R X ] L
M| ER M
F san F
Y LR 4 ITITETILE
w LR w  »
H . H
K K
R " R
Q. Q
N N
D D
E E
pT pT
pY pY

-5-4-3-2-1+1+243+4 -5-4-3-2-1+1+243+4

ball-and-stick representation. b, Top, log-selectivity of the 78 conventional +1pTyrsubstrate by EGFR.

kinases for +1 pTyr, arranged in order of decreasing favorability. Bottom,
corresponding amino acid residues that align with Ala920 of EGFR (bin size:
8kinasesintheleft 8 bins; 7 kinasesin the right two bins)®®. ¢, Experimental
validation of theimportance of Ala920in facilitating phosphorylation of
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b FGFR1
Rate of Percentile

Site Sequence Order Phosphorylation Score
Y653" I-H-H-I-D-Y-Y-K-K-T-T 1 0.1080 + 0.010 min"" 44%
Y583 P-P-G-L-E-Y-C-Y-N-P-S 2 0.1388 £0.016 min"' 73%
Y463 A-G-V-S-E-Y-E-L-P-E-D 3 0.0209 + 0.004 min' 64%
Y654 H-H-I-D-pY-Y-K-K-T-T-N 4 0.0151 £0.002 min"'" 23%
Y585 G-L-E-pY-C-Y-N-P-S-H-N 5 0.0032 +0.001 min? 11%

*Activating phosphorylation event

Extended DataFig. 8| Correspondence between the order of RTK were treated as phosphopriming events (thatis, scored as pTyr) if they
auto-trans-phosphorylation events and motif-based scores. a, Illustration preceded the central Tyrintheir reported order of phosphorylation®. Sites of
of FGFR1autophosphorylation. b, Reported rates and sequential order of phosphorylationareindicatedinred. Priming phosphorylations areindicated
auto-trans-phosphorylation of five Tyr sites on FGFR1** alongside their ingreen.

corresponding percentile scores for FGFR1’'s PSSM. Noncentral Tyr residues
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-o- JAKtide mut2 K-A-V-D-G-Y-D-K-P-Q-I 34% 45%,
- ZAPtide E-G-A-P-D-Y-E-N-L-Q-E 41% 97%
-o- ZAPtide mut1 E-G-A-P-F-Y-E-N-L-Q-E 46% 75%
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Extended DataFig. 9 |Kinetics of peptide phosphorylation by JAK1and
ZAP70.a,Sequences of Tyr substrate peptides. The peptides are modelled
after JAK’s physiological substrate STAT5A Tyr694 (JAK-tide) and ZAP70’s
physiological substrate LAT1Tyr255 (ZAP-tide), withamino acid substitutions
introduced at the indicated positionsingreen. Right, the corresponding
percentile scores foreach peptide based on the PSSMs of JAK1and ZAP70.
b-c,Kinetics of peptide phosphorylation by JAK1 onJAKtide substrates (b) and
ZAPtide substrates (c). Best-fitlinesillustrate fitting of the data points to
Michaelis-Menten kinetics function using GraphPad Prism 10.1. Data shows

mean values with error barsindicating the standard deviations of the data
(n=3independentreactions).d-e,Kinetics of peptide phosphorylation by
ZAP70 onJAKtide substrates (d) and ZAPtide substrates (e). Best-fit lines
illustrate fitting of the data points to Michaelis-Menten kinetics function
using GraphPad Prism 10.1. Data shows mean values with error bars indicating
thestandard deviations of the data (n =3 independentreactions). f, Kinetic
parameters for phosphorylation of the indicated peptides by JAK1and ZAP70
inb-e.Thestandard errorsof thelinear fits areindicated (+). The corresponding
experimental data for allthese plots are presented in Supplementary Fig. 2.
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Homo sapiens
Substrate: PDHA1 Tyr301
Phosphorylation site: DPGVSYRTREE

Rank Kinase Percentile
1 WEE1 96.48
2 PDHK3 96.46
3 PDHK4 91.99
4 MKK6 85.10
5 TESKA1 79.97
6 MKK7 76.14
7 TNNI3K 73.93
8 PINK1 73.78

Extended DataFig.10|Motif-enrichmentanalysis of phosphoproteomics
data and motif-scoring results for asuboptimal Tyr phosphorylationsite
onthe pyruvate dehydrogenase complex. a, Motif-enrichment results from

published datasetsin cells after ligand stimulation (a), oncogenic mutation (b),

ortargeted inhibition (c) of Tyrkinases. a, A549 cells after 5 min treatment with
100 ng/mL EGF*°.b, NMuMG cells after expression of FGFR2A18 mutant*,
¢, H2286 cells after treatment for 3 hwith 1 uM dasatinib**. Kinases indicatedin

Saccharomyces cerevisiae
Substrate: PDA1 Tyr321
Phosphorylation site: DPGTTYRTRDE

Rank Kinase Percentile
1 PDHK4 99.02
2 WEE1 96.93
3 MKK6 94.86
4 PDHK3 94.72
5 MKK7 91.55
6 BMPR2 81.24
7 TESK1 79.62
8 MKK4 74.19

boldina-carediscussedinthe maintext. Theenrichmentsina-cwere
determined using one-sided exact Fisher’s tests. d, Illustration of the
mitochondrial-localized regulation of the pyruvate dehydrogenase complex
by the PDHKSs. e, Scoring results for human pyruvate dehydrogenase E1
componentsubunitalpha (PDHA1) Tyr301and homologous site on the yeast
ortholog PDA1, highlighting PDHK family members.
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