11 research outputs found

    Brownian ratchets driven by asymmetric nucleation of hydrolysis waves

    Full text link
    We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction positioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between ``hydrolyzed'' and ``unhydrolyzed'' states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes which yield maximal domain wall flux, leading to optimal particle drift.Comment: 5 pp, 6 fig

    Cis-interactions between Notch and Delta generate mutually exclusive signalling states

    Get PDF
    The Notch–Delta signalling pathway allows communication between neighbouring cells during development^1. It has a critical role in the formation of ‘fine-grained’ patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch–Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis–trans input–output relationship in the Notch–Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch–Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours

    Safety of procuring research tissue during a clinically indicated kidney biopsy from patients with lupus: data from the Accelerating Medicines Partnership RA/SLE Network

    Get PDF
    Objectives In lupus nephritis the pathological diagnosis from tissue retrieved during kidney biopsy drives treatment and management. Despite recent approval of new drugs, complete remission rates remain well under aspirational levels, necessitating identification of new therapeutic targets by greater dissection of the pathways to tissue inflammation and injury. This study assessed the safety of kidney biopsies in patients with SLE enrolled in the Accelerating Medicines Partnership, a consortium formed to molecularly deconstruct nephritis.Methods 475 patients with SLE across 15 clinical sites in the USA consented to obtain tissue for research purposes during a clinically indicated kidney biopsy. Adverse events (AEs) were documented for 30 days following the procedure and were determined to be related or unrelated by all site investigators. Serious AEs were defined according to the National Institutes of Health reporting guidelines.Results 34 patients (7.2%) experienced a procedure-related AE: 30 with haematoma, 2 with jets, 1 with pain and 1 with an arteriovenous fistula. Eighteen (3.8%) experienced a serious AE requiring hospitalisation; four patients (0.8%) required a blood transfusion related to the kidney biopsy. At one site where the number of cores retrieved during the biopsy was recorded, the mean was 3.4 for those who experienced a related AE (n=9) and 3.07 for those who did not experience any AE (n=140). All related AEs resolved.Conclusions Procurement of research tissue should be considered feasible, accompanied by a complication risk likely no greater than that incurred for standard clinical purposes. In the quest for targeted treatments personalised based on molecular findings, enhanced diagnostics beyond histology will likely be required

    Experimental and Theoretical Studies of Notch Signaling-Mediated Spatial Pattern

    Get PDF
    Notch signaling acts in many diverse developmental spatial patterning processes. To better understand why this particular pathway is employed where it is and how downstream feedbacks interact with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively measure the Notch system's signal input/output (I/O) relationship in cell culture, (ii) to use the quantitative I/O relationship to computationally predict patterning outcomes of downstream feedbacks, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed that in addition to the trans-activation between Notch and Delta on neighboring cells there is also a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to amplify small differences between cells. Incorporating our improved understanding of the signaling system into simulations of different types of downstream feedbacks and boundary conditions lent us several insights into their function. The Notch system converts a shallow gradient of Delta expression into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where signal downregulates ligand expression, by removing the requirement for explicit cooperativity in the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to a downstream lateral induction feedback, the Notch system supports the propagation of a signaling front across a tissue to convert a large area from one state to another with only a local source of initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth muscle specification around artery walls. Finally, by implementing a version of the lateral induction feedback architecture modified with the addition of an autoregulatory positive feedback loop, we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to themselves transmit signal to neighboring cells, which is the hallmark of lateral induction

    Mutual inactivation of Notch receptors and ligands facilitates developmental patterning

    Get PDF
    Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.This work was supported by US National Institutes of Health Fellowship F32GM77014 (DS, www.nih.gov), Fannie and John Hertz Foundation (AL, www.hertzfoundation.org), UCLA/Caltech MedicalScientist Training Program, NIH GM08042 (AL, mstp.healthsciences.ucla.edu), Ministerio de Ciencia e Innovacion project FIS2009-13360 (JGO, web.micinn.es), Instituto de Salud Carlos III (JGO, www.isciii.es), ICREA Academia program (JGO, www.icrea.cat), Ca ltech Center for Biological Circuit Design (www.cbcd.caltech.edu), and The Packard Foundation (www.packard.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Mutual inactivation of Notch receptors and ligands facilitates developmental patterning

    No full text
    Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.This work was supported by US National Institutes of Health Fellowship F32GM77014 (DS, www.nih.gov), Fannie and John Hertz Foundation (AL, www.hertzfoundation.org), UCLA/Caltech MedicalScientist Training Program, NIH GM08042 (AL, mstp.healthsciences.ucla.edu), Ministerio de Ciencia e Innovacion project FIS2009-13360 (JGO, web.micinn.es), Instituto de Salud Carlos III (JGO, www.isciii.es), ICREA Academia program (JGO, www.icrea.cat), Ca ltech Center for Biological Circuit Design (www.cbcd.caltech.edu), and The Packard Foundation (www.packard.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Anticitrullinated peptide antibody epitope expansion and the HLA DRB1 ‘shared epitope’ are less common in seropositive checkpoint inhibitor-induced inflammatory arthritis than in longstanding rheumatoid arthritis

    No full text
    Background Immune checkpoint inhibitors (ICI) can potentially cause ICI-inflammatory arthritis (ICI-IA), which often resembles rheumatoid arthritis (RA). In this study, we examined the degree of anticitrullinated peptide antibodies (ACPA) epitope expansion in CCP+ICI-IA and patients with RA.Methods We used clinical data and serum from ICI-IA and patients with RA with early disease as well as longstanding disease. A custom, bead-based antigen array was used to identify IgG ACPA reactivities to 18 putative RA-associated citrullinated proteins. Hierarchical clustering software was used to create a heatmap to identify ACPA levels. Additionally, HLA DRB1 typing was performed on ICI-IA patients as well as controls of patients treated with ICI that did not develop ICI-IA (ICI controls).Results Compared to patients with CCP+RA, patients with CCP+ICI-IA were older (p<0.001), less likely to have positive rheumatoid factor (p<0.001) and had a shorter duration of symptoms (p<0.001). There were less ACPA levels and a lower number of distinct ACPA epitopes in the serum of patients with ICI-IA compared with longstanding patients with RA (p<0.001). Among those tested for HLA DRB1, there were no differences in the frequency of the shared epitope between those with ICI-IA and ICI controls.Conclusion Patients with ICI-IA had lower ACPA titres and targeted fewer ACPA epitopes than longstanding patients with RA, and there were no significant differences in the presence of the shared epitope between those that developed ICI-IA and ICI controls. It remains to be determined if ICI-IA represents an accelerated model of RA pathogenesis with ICI triggering a transition from preclinical to clinical disease
    corecore