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Abstract

Notch signaling acts in many diverse developmental spatial patterning processes. To better under-
stand why this particular pathway is employed where it is and how downstream feedbacks interact
with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively
measure the Notch system’s signal input/output (I/O) relationship in cell culture, (ii) to use the
quantitative I/O relationship to computationally predict patterning outcomes of downstream feed-
backs, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling
upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed
that in addition to the trans-activation between Notch and Delta on neighboring cells there is also
a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to
amplify small differences between cells. Incorporating our improved understanding of the signaling
system into simulations of different types of downstream feedbacks and boundary conditions lent us
several insights into their function. The Notch system converts a shallow gradient of Delta expres-
sion into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated
by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where
signal downregulates ligand expression, by removing the requirement for explicit cooperativity in
the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to
a downstream lateral induction feedback, the Notch system supports the propagation of a signaling
front across a tissue to convert a large area from one state to another with only a local source of
initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a
sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth

muscle specification around artery walls. Finally, by implementing a version of the lateral induc-



vi
tion feedback architecture modified with the addition of an autoregulatory positive feedback loop,

we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to

themselves transmit signal to neighboring cells, which is the hallmark of lateral induction.
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Chapter 1

Introduction

Integral to most modern definitions of ‘life’ is the capacity to reproduce. Complex multicellular or-
ganisms, in order to satisfy this imperative, cycle between the single-cell zygotic state and the adult
form. Developmental biology addresses the mechanisms by which a single cell under suitably sup-
portive conditions can reliably proceed to generate a functional, fully-formed multicellular organism.
The developmental trajectory must include growth in the number of cells by division, specialization
of cellular function by differentiation, and proper ordering of those processes in space and time by
means of some regulation. Such regulation frequently arises from communication between initially
equivalent cells which, under the influence of a feedback network, coordinate to achieve a spatially
patterned outcome. Our primary interest in this work is to understand the basis of spatial pattern-
ing by studying the interactions between intercellular signaling systems and intracellular feedback
networks, using both in silico computation and in vitro experimental methods.

The modern body of knowledge in a wide variety of developmental spatial and temporal patterns
is vast, with ancient origins in the description of macroscopically-discernible stages of embryological
development [1]. Over time advances in the state of technology allowed progressively more refined
observational and eventually experimental approaches. Microscopy and the cell theory of biology
made visible early steps in establishing body plan [2], and transplantation experiments [3] began
to reveal the important role of interactions between different types of cells in initiating patterning
processes. Eventually knowledge of the genetic basis of biological activity led to the search for genetic

influences on development [4]. Classical genetic approaches involved careful observation of normal
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wild type patterning outcomes, so that the outcome of mutagenesis can be compared against normal.
Screens involving visible features (such as the number and polarity of segments in an embryo in the
seminal Drosophila work of Niisslein-Volhard and Wieschaus [5]) identified many determinants of
spatial pattern, and have been complemented over time with improvements in imaging techniques
allowing more detailed probes of structure formation processes. This has been especially crucial
with respect to dynamic patterns of gene expression that were inaccessible in realtime (or otherwise)
before effective fluorescent imaging. In addition, progressively greater sophistication in manipulating
the genomes of model organisms has enabled a wider spectrum of genetic perturbations, allowing
control over the timing, spatial distribution, and strength of mutant alleles that has been critical
in understanding how components of signaling systems and regulatory networks interact to drive
spatial pattern.

As much as approaches to studying development have evolved over time, they remain fundamen-
tally tied to studying patterns in the context where they arise naturally. This has many advantages,
especially with respect to physiological relevance, but there are also important limitations. When
manipulating an endogenous pathway it is not possible to make claims of sufficiency for any pro-
posed mechanism, because in natural systems every component is embedded in a dense interaction
network. The specificity of a phenomenon to a particular organism, or its generality across species,
cannot be rigorously assessed exclusively in natural systems. Especially in development, when a
process of interest might be one of many occurring simultaneously in a highly dynamic environment,
the natural context may be exceedingly difficult to measure or manipulate. Part of the promise
of synthetic approaches to biology is to overcome such challenges [6]. If a proposed mechanism
for a phenomenon, such as reasonably stable oscillations, can successfully capture the desired be-
havior when implemented using components orthogonal to the host organism [7,8], it constitutes a
proof of sufficiency. Successfully transplanting a proposed regulatory network architecture into an
in vitro system also offers support for cross-species generality. Synthetic approaches to reconstruct
behaviors have been recently employed beyond prokaryotes in mammalian cell culture [9]. These

motivations drive our intention to gain insight into developmental pattern formation by synthetically
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reconstituting putative minimal regulatory networks in mammalian cell culture.

As mentioned earlier, communication between cells is required for the kind of bottom-up spatial
patterning events observed throughout development. A small number of signaling pathways are
employed for this purpose in development, among which is the Notch signaling pathway [10]. The
first observed phenotype due to a mutation in the gene that would come to be known as Notch
arose in Drosophila, where the allele in question generated malformed wings with notches along
their margin [11,12]. Further studies of Drosophila with mutant Notch alleles showed an effect on
the distribution of cell types [13], in particular between neurons and ectoderm, suggesting a role
in cell fate determination. Work in what would prove to be the Notch ortholog in C. elegans [14],
lin-12, provided evidence that the action of Notch was partly cell non-autonomous [15] — that it
normally depended on interactions with a neighboring cell. Searches in Drosophila for mutations in
other genes with similarity to the Notch phenotype proved successful, including the identification of
Delta (so named for the thickening of wing veins in Delta heterozygotes). Delta was established to
be a ligand for Notch by a variety of evidence including gene dosage mosaic analysis [16]. From these
early experiments elucidating the roles of Notch signaling in specific model systems, knowledge of
the signaling system’s importance due to its frequent use throughout development, its conservation
across species, and its complexity via additional regulators of signaling has grown considerably
[10,17].

Notch refers to a family of single-pass transmembrane receptors (ranging from one member in
Drosophila to four in mammals) with a series of EGF-like repeats in the extracellular part and an
intracellular part containing nuclear localization signals and a trans-activating domain [18]. The
canonical partners of the Notch family are the transmembrane DSL (Delta/Serrate/Lag-2) ligands
— Delta and Serrate in Drosophila, Delta-like(DI1)1/3-4 and Jagged1-2 in mammals [18]. The
extracellular EGF-like repeats of Notch receptors and DSL ligands interact in ¢rans on the surfaces
of neighboring cells, which generates a force [19] exposing a site on the receptor to a cleavage event
that ultimately leads to release of the receptor intracellular domain and its trafficking into the

nucleus, where it regulates downstream genes. A receptor and a ligand on the surface of the same
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cell can also bind in ¢is, which has an inhibitory effect on signaling [20].

Notch signaling is implicated in a wide variety of spatial patterning processes including the
specification of neural and epidermal cells from neuroectoderm [21], organization of sensory regions in
the inner ear [22], wing vein boundary sharpening in Drosophila [23], and smooth muscle specification
surrounding artery walls [24]. In neural specification the Notch system engages a type of feedback
known as ‘lateral inhibition’ in which Notch signaling downregulates Delta expression, which leads
to an alternating spatial pattern of Notch activity (referred to as a lateral inhibition pattern). In
the Drosophila wing vein, the boundary between vein and intervein cells is sharpened in a Notch-
dependent process. The specification of smoooth muscle surrounding the walls of some arteries is a
‘lateral induction’ process, in which Notch signaling activates expression of ligand. In each of these
cases, the combination of (i) a signaling system, (ii) a downstream regulatory feedback, and (iii)
specific initial conditions drive the system to a patterned outcome.

Our first step toward synthetically reconstituting developmental spatial pattern was to choose a
signaling system and characterize its properties relevant to patterning. We chose the Notch signaling
system, and decided that in order to gain insight into why the Notch system is used in specific
natural patterning processes and to rationally compose synthetic pattern-generating feedbacks it
was necessary to quantitatively understand the relationship between ligand levels (in cis and in
trans) and the system’s signal output. In spite of the system’s developmental importance and
the vast literature relating to it, such a measurement had not been reported. The results of our
measurement of the system input/output relationship for the Notch1/DIl1 pair have been published
[25], and appear as Chapter 2 of this thesis. My contributions to the work were principally in
data analysis and computations relating to the interpretation of the data, including its potential
developmental relevance.

Second, we have taken the insights into the Notch system from its ligand response profile and
applied them to a variety of spatial patterns known to employ Notch signaling. This computational
work comprises the content of Chapter 3. Its first section, published with my contribution as equal

first author [26], reports on our findings regarding the effect of cis-inhibition in models of boundary
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formation and lateral inhibition motivated by specific developmental processes. The second section
expands on an exceptionally elegant mechanism for lateral inhibition that I conceived during our
analysis of the Notch signaling response function data [27]. Lastly, the third section presents my
unpublished work on the potential for patterning with a lateral induction feedback.

Third, we have sought to implement a pattern-forming feedback downstream of the Notch signal-
ing system in mammalian cell culture. Chapter 4 describes an attempt to synthetically reconstitute
lateral induction signaling in CHO-K1 cells, a standard mammalian cell culture line. It also reports
on the effect of rewiring the feedback circuit to incorporate an additional auto-activating positive
feedback. Ultimately, taken together we quantitatively characterize the signaling behavior of the
Notch system, computationally assess the significance of this behavior combined with feedbacks
in spatial patterning processes, and attempt to reconstitute the lateral induction behavior in cell

culture.
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Chapter 2

Cis-interactions between Notch
and Delta generate mutually
exclusive signalling states

This chapter has been published! in identical form, save for differences between journal and thesis
formatting requirements. My contribution as described in the published manuscript was to the data
analysis, and in providing input for writing the paper. I also contributed significantly to the analysis

of the potential pattern-related consequences of the cis-inhibition feature reported in the paper.

Abstract

The Notch-Delta signalling pathway allows communication between neighbouring cells during de-
velopment [1]. It has a critical role in the formation of ‘fine-grained’ patterns, generating distinct
cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbour-
ing regions in developing tissues [2-5]. The Delta ligand has been shown to have two activities:
it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it
remains unclear how Notch integrates these two activities and how the resulting system facilitates
pattern formation. Here we report the development of a quantitative time-lapse microscopy plat-
form for analysing Notch-Delta signalling dynamics in individual mammalian cells, with the aim of

addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring

1Sprinzak, D., Lakhanpal, A., LeBon, L., Santat, L.A., Fontes, M.E., Anderson, G.A., Garcia-Ojalvo, J., &
Elowitz, M.B. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465,
86-90 (2010).
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the dynamics of a Notch reporter, we measured the combined cis-trans input-output relationship
in the Notch-Delta system. The data revealed a striking difference between the responses of Notch
to trans- and cis- Delta: whereas the response to trans-Delta is graded, the response to cis-Delta
is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple math-
ematical model that shows how these behaviours emerge from the mutual inactivation of Notch
and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between
mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling
states. At the multicellular level, this switch can amplify small differences between neighbouring
cells even without transcription-mediated feedback. This Notch-Delta signalling switch facilitates
the formation of sharp boundaries and lateral-inhibition patterns in models of development, and

provides insight into previously unexplained mutant behaviours.

Letter

Notch and Delta are single-pass transmembrane protein families found in metazoan species. Delta
in one cell can bind to, and transactivate, Notch in a neighbouring cell. This interaction results in
proteolytic release of the Notch intracellular domain, which translocates to the nucleus and activates
target genes6 (Fig. la). Delta also has a second role, inhibiting Notch activity in its own cell (cis-
inhibition) [7-10]. Clis-inhibition has been shown to involve direct interaction of the two proteins
[11], but current understanding is incomplete [12].

To understand how concentrations of cis- and trans-Delta are integrated by the Notch pathway
(Fig. 1b), we constructed cell lines that allowed us to modulate the concentrations of cis- and
trans-Delta independently, and to monitor quantitatively the transcriptional response of a Notch
reporter (Fig. 1c and Supplementary Fig. 1). These cell lines stably expressed Notch receptors and
corresponding yellow fluorescent protein (YFP) reporters of Notch activity (Supplementary Figs 1
and 2). They also contained a doxycycline-inducible chimaeric rat DIl1-mCherry fusion gene (Delta-
mCherry; Supplementary Fig. 3). In our main cell line, hN1G4" | the intracellular domain of human

NOTCH1 was replaced with a minimal variant of the transcriptional activator Gal4, denoted Gal4®s"
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[13], to avoid activation of endogenous Notch targets [14-16]. A second cell line, hN1, containing the
full-length human NOTCH1 was analysed as a control (Supplementary Fig. 1). Notch messenger
RNA expression levels in these cells were comparable to those observed in early T-cell progenitors
where Notch is active [17] (Supplementary Information).

We first asked how Notch activity depends on the concentration of trans-Delta. We adsorbed
fusion proteins, consisting of immunoglobin-G (IgG) fused to the extracellular domain of human
DLL1 (Delta®™*), to the surface of plates at different concentrations, denoted Dplate (Fig. 2a and
Supplementary Fig. 4) [18,19], and recorded time-lapse movies of Notch activation. Before the
start of each movie (¢ < 0), we inhibited Notch activation using the 7-secretase inhibitor N-[N-(3,5-
difluorophenacetyl)-L-alanyl]- S-phenylglycine t-butyl ester (DAPT). At t = 0, DAPT was washed
out, allowing the fluorescent reporter to accumulate at a rate determined by Notch activity (Fig.
2b, ¢ and Supplementary Movie 1). The YFP production rate showed a graded response to Dpjate,
well-fitted by a Hill function with a modest Hill coefficient (Fig. 2d).A similar response was observed
in the hN1 cell line (Supplementary Figure 1). This graded response was not due to the use of plate-
bound ligands: when cells expressing only Delta were co-cultured with cells expressing only Notch,
we observed a similarly graded dependence of Notch activity on the level of Delta expression, but
with greater variability (Supplementary Fig. 5).

We next set out to quantify the response of Notch to varying concentrations of cis-Delta in the
hN1G4" cell line. We used a scheme in which Delta-mCherry was expressed in a pulse before
the start of the movie and subsequently allowed to dilute, effectively titrating its concentration
[20] (Fig. 3a). These experiments were performed at low cell density, where relatively weak inter-
cellular activation of Notch is observed (Supplementary Fig. 6), and transactivation was induced
predominantly by Dypjate. At the beginning of the movie, Notch reporter expression was fully inhib-
ited by high Delta- mCherry concentrations (Fig. 3b and Supplementary Movie 2). Subsequently,
Delta-mCherry concentrations gradually declined on a timescale of 7p = 32 £ 2.5 h, consistent with
dilution by cell growth and division (Fig. 3c). At ton, =~ 40 h, we observed a sharp onset of reporter

expression in the median response of the population (Fig. 3c). Even sharper responses were evident
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in individual cell lineages (Fig. 3d-f and Supplementary Fig. 13). Similar behaviour was observed
in the hN1 cell line (Supplementary Fig. 7)

To quantify the sharpness of cis-inhibition, we computed the rise time, denoted Tise, required
for Notch activity to increase by a factor of e in individual cells (Fig. 3e and Fig. 3a, inset).
The distribution of 75 showed a median of 2.6 h, which is considerably less than m (Fig. 3f).
For comparison, an equivalently sharp Hill function of cis-Delta would require a Hill coeflicient of
™/ Trise < 12.

We repeated the experiment for a variety of Dpjate values, allowing us to directly measure the
integrated response of Notch across the two-dimensional input space of cis- and trans-Delta concen-
trations (Fig. 3g and Supplementary Fig. 14). Activation occurred at a similar value of ¢,, and,
therefore, a similar cis-Delta concentration, regardless of Dyjate, as indicated by the fixed position
of the transition from black to green points in Fig. 3g. In addition, the activation remained sharp
at all Dpjate values for which it could be clearly measured.

Thus, an explanation for the observed cis- and trans-signal integration must simultaneously
account for the three key features of the experimental data: a graded response to trans-Delta (Fig.
2d), a sharp response to cis-Delta (Fig. 3c-f) and a fixed threshold for cis-inhibition across varying
concentrations of trans-Delta (Fig. 3g). We show here that a simple model can explain these
observations in a unified way (Box 1 and Fig. 3h). The model’s key assumption is that Notch
and Delta in the same cell mutually inactivate each other. As shown in Box 1, strong enough
mutual inactivation can produce an ultrasensitive switch between two mutually exclusive signalling
states: cells can be in a predominantly ‘sending’ state, with high Delta concentration and low Notch
concentration, or a ‘receiving’ state, with high Notch concentration and low Delta concentration,
but cannot be in both states at the same time. Alternative models that do not include mutual
inactivation fail to account for the observed data (Supplementary Fig. 8).

The three features described above emerge naturally in this model. First, in the absence of
cis-Delta, the rate of Notch activation is proportional to the trans-Delta concentration, generating

a graded response. Second, a sharp response to cis-Delta results from mutual inactivation, which
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causes an excess of either protein to strongly diminish the activity of the other. Finally, the switching
point occurs when Notch and cis-Delta concentrations are comparable, and is therefore only weakly
dependent on trans-Delta.

The mutual-inactivation model predicts cis-inhibition, not just of Notch by Delta but also of
Delta by Notch. This interaction is supported by results in other systems [12,21,22]. We tested this
prediction in our system using a transactivation assay based on co-culture of Delta-expressing sending
cells with Notch reporter cells. Expression of Notch in the Delta-expressing cells reduced their ability
to transactivate, as predicted (Supplementary Fig. 9). The exact biochemical mechanism of mutual
inactivation remains unclear, but we observed no sharp drop in the total cellular Delta-mCherry
fluorescence during switching, suggesting that the inactive complex may be stable in these conditions
(Fig. 3c, d).

This signalling switch has important implications for multicellular patterning. To understand
these implications, consider two neighbouring cells that produce Notch and Delta at constant rates
(Fig. 4a). A slight excess of Notch production in one cell and a slight excess of Delta production in
its neighbour can generate a strong signalling bias in one direction: the first cell becomes a receiver
and the second becomes a sender. In this way, a small difference in production rates between cells
is amplified into a much larger difference in Notch activity (Fig. 4b). This amplification does not
require transcriptional regulation or feedback.

The send-receive signalling switch can facilitate formation of sharp boundaries. For example, in
Drosophila Notch and Delta sharply delineate wing vein boundaries [4,5]. In this system, Delta pro-
duction is initially expressed in a graded profile transverse to the vein. Eventually, Notch signalling
is restricted to two sharp side bands on either side of the vein axis.

As a simplified model, we simulated the development of a field of cells with a graded rate of
Delta production and a uniform rate of Notch production (Fig. 4c). The mutual-inactivation model
generated sharply defined side bands of Notch signalling at positions where the two production
rates intersect, that is, where sender and receiver cells are next to each other (Fig. 4c¢). Moreover,

this model explains a striking mutant behaviour that occurs in the Drosophila wing vein system.
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Although Notch and Delta are individually haploinsufficient (causing thicker veins), the Notch™/~
Delta®/~ double mutant restores the wild-type phenotype [23]. This suppression of the single-mutant
phenotypes in the double mutant emerges automatically in the model because proportional rescaling
of the Notch and Delta production rates does not move their intersection points (Fig. 4d). This
suppression is maintained across a broad range of parameter values and persists even with additional
feedbacks (Supplementary Fig. 10c), but is difficult to explain in other models (Supplementary Fig.
10a and Supplementary Information).

The send-receive signalling switch can also facilitate lateral-inhibition patterning. When Notch
transcriptionally downregulates Delta expression, the resulting intercellular positive-feedback loop
can generate ‘checkerboard’ patterns of Notch activity [24,25] (Fig. 4e). Without mutual inactiva-
tion, pattern formation requires a minimum Hill coefficient of n = 2, or higher, in the regulatory
feedback loop (Fig. 4f, left, and Supplementary Information). Although we cannot rule out such
cooperativity, or additional feedback loops, no evidence for strongly cooperative transactivation was
observed here or previously (Fig. 2d and Supplementary Fig. 1). In contrast, mutual inactivation
allows patterning even without cooperativity, by introducing a sharp response to changes in Delta
expression (Fig. 4f, right). In addition, for strong enough cis-inhibition, mutual inactivation allows
cells with high Delta concentrations to coexist next to one another in the steady state, leading to a
broader range of possible patterns (Supplementary Fig. 17). Finally, we note that low concentrations
of free Notch and Delta exist in sender and, respectively, receiver cells for finite mutual-inactivation
strengths (Supplementary Fig. 11). The resulting signalling between like cells (senders or receivers)

can have a role in lateral-inhibition patterning dynamics.

Modeling Box

Here we describe a simple model of Notch-Delta interactions that explains the experimental data
and provides insight into developmental patterning processes. The model involves several reactions.
First, during intercellular signalling, Notch in one cell binds to extracellular Delta, of concentration

Dyyrans, leading to release of the Notch intracellular domain and degradation of its extracellular
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domain [6]. Similarly, Notch in a neighbouring cell, Ni;qrs, can bind to Delta. Second, Notch binds
irreversibly to Delta in the same cell to form a stable, inactive, complex, which is effectively removed
from the system [12]. Finally, Notch and Delta are produced at constant rates, and degraded and/or
diluted at a constant rate, in addition to being removed through the interactions described above.
These reactions can be expressed as a set of ordinary differential equations for the concentrations
of free Notch, N, and free Delta, D, in an individual cell. An additional equation represents the

intracellular domain of Notch, S, which activates expression of the fluorescent reporter gene:

dN DN Dt'r‘ansN
2 By — AN — _ Ztrans’l
a v ke ks
d.D DN DNtrans
2 By —~D — _ Ziltrans
a ~Pr—o ke kr
dS _ DyansN _

itk Vs

Here Dyyans represents Dpjate in Figs 2 and 3, but could also represent Delta concentration in one or
more neighbouring cells (Supplementary Information). Similarly, D in these equations corresponds
to cis-Delta in the experiments, and Sy and Sp denote the production rates of Notch and Delta,
respectively. The combined degradation and dilution rate, -, is assumed for simplicity to be the
same for Notch and Delta, and ~g is the rate of decay of S. We write k. and k; to denote the
strengths of cis-inhibition and transactivation, respectively. See Supplementary Information for a
more detailed description.

In the steady state, mutual inactivation leads to a switch between two qualitatively distinct
behaviours, depending on the relative production rates of Delta and Notch. When Sp > Sy, ex-
cess Delta effectively inactivates almost all Notch, allowing cells to send, but not efficiently receive,
signals. Conversely, when Sp < Sy, excess Notch effectively inactivates Delta, allowing cells to
receive, but not efficiently send, signals. Thus, the system approaches two mutually exclusive sig-
nalling states: high Delta/low Notch (‘sending’; pink shading in Figure), and high Notch/low Delta
(‘receiving’; blue shading in Figure). We note that this switch is not bistable.

In the steady state, the transition between the two regimes is ultrasensitive: near the threshold,
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a relatively small change in 8p or Sy can lead to a much larger change in signalling (Supplementary
Fig. 11). Related biochemical kinetics occur in bacterial small RNA and protein sequestration
[27-29]. In Fig. 3, ultrasensitivity occurs dynamically in response to the decay of the total Delta

concentration (Supplementary Information).
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Figure 1: System for analyzing signal integration in the Notch-Delta pathway. a, Notch (blue) and
Delta (red) interactions are indicated schematically. b, Notch activity integrates cis-and trans-Delta.
¢, T-REx-CHO-K1 cell line for analysing Notch activity. The hN1G4°" cell line stably incorporates
a variant of human NOTCHI in which the activator Gal4®™ replaces the Notch intracellular domain
(here hN1(ECD) is the extracellular domain of hN1). This cell line also contains genes for histone
2B (H2B)citrine (YFP) reporter controlled by an upstream activating sequence (UAS) promoter, a
tetracycline-inducible (TO) DeltamCherry fusion protein and a constitutively expressed H2Bcerulean
(cyan fluorescent protein, or CFP) for image segmentation (not shown). A similar cell line expressing
full-length human NOTCH1 (the hN1 cell line) was also analysed (Supplementary Figs 1 and 2).
These cells exhibit no detectable endogenous Notch or Delta activities. NotchDelta interactions are
indicated schematically and do not represent molecular interaction mechanisms [11].
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Figure 2: Transactivation of Notch occurs in a graded fashion. a, Experimental design. The rate
of increase of fluorescence (slope of green line) is a measure of Notch activity. b, Typical hN1G4®"
filmstrip showing activation of Notch reporter (green), with Dpjase = 1.16 ug ml~! and frame times
as indicated (Supplementary Movie 1; compare with Supplementary Fig. 6). ¢, hN1G4%" cells
respond in a graded manner to variations in Dpjqte. The data show the median fluorescence of
individual cells within a single field of view for the indicated values of Dyjqse (see Supplementary
Fig. 15 for distributions). RFU, relative fluorescence unit. d, The relationship between Dpjqse and
Notch activity (in RFU per hour, from the linear regime in ¢). The Hill-function fit is indicated by
the black line, which has Hill coefficient n = 1.7 (95% confidence interval, n = 0.8 — —2.7). Similar
results were obtained using the hN1 cell line (Supplementary Fig. 1). We note that doxycycline does
not directly affect Notch activation or cell growth, nor does Dpjqe affect cell growth (Supplementary
Fig. 12).
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Figure 3: Clis-trans signal integration by Notch. a, Experimental protocol. Inset, the rise time, Tyise,
is the time required for Notch activity (black line or slope of green line) to change by a factor of
e. dox, doxycycline. b, Filmstrip of hN1G4%" cells, with Dyjate = 1.45 pg ml=! (Supplementary
Movie 2), showing Delta-mCherry fluorescence (red) and concomitant activation of Notch reporter
(green) at the indicated times (compare with Supplementary Fig. 6). ¢, Population average (median)
response for the same movie shows a slow decay of Delta-mCherry fluorescence (red data), but a
sharp response of reporter expression (green data). Constitutively expressed pCMV-H2B-cerulean
(blue data) remains constant (control). Compare with the single-cell tracks in Supplementary Fig.
13 and the response to modulation of doxycycline in Supplementary Fig. 14. d, Single-cell response
for two individual cells (solid and dashed lines, colours as in ¢). Black arrows mark cell divisions. e,
Single-cell traces in d replotted, but shifted up after each cell division event to ‘add back’ sister-cell
fluorescence, to show the continuity of Notch activity (see also Supplementary Fig. 13). f, Histogram
of Tyise from 26 non-overlapping cell lineages (Supplementary Fig. 13). g, Notch response to both
cis- and trans-Delta. Data shown are from two duplicate movies acquired at each of 12 D,jqse values
for hN1G4*" cells. Green colouring indicates data that exceed a detection threshold. Note that
onset (the black-to-green transition) occurs at approximately the same time for all Dpjqse values. h,
Simulations based on the model in Box 1 are qualitatively similar to data in g (see Supplementary
Information and Supplementary Fig. 16 for model details). a.u., arbitrary units.
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Figure 4: The mutual-inactivation model in multicellular patterning. a, Signal amplification. The
two interacting cells have the same amount of Notch (here, two molecules) but different amounts of
Delta (one or three molecules). Owing to the cis-interaction between Notch and Delta, signalling
is strongly biased to cell 1. b, Notch amplifies differences between cells. Signal amplification,
(S1/52 — 1)/(ﬂg)/ﬂg) — 1), for two interacting cells, with different Delta production rates, /3’532) =
1.3551(:}) (see model in Supplementary Information). The z axis shows the average Delta production

rate, (Bp) = ( (D2) + ﬂ(Dl)) /2. Maximum amplification occurs when Delta production rates flank Sy
(vertical dashed line). Stronger mutual inactivation (smaller k./k:) increases signal amplification.
¢, d, Sharp boundary formation in response to a gradient of Delta production. ¢, Simulation of
a field of interacting cells in which Delta production rates decay exponentially from the centre,
according to Bp(z) = BYhexp(—x/xo) with xg = 7 cells (dashed red line). The Notch production
rate, By, is constant (dashed blue line). The resulting free Notch and Delta protein levels are
indicated (solid lines). Notch activation occurs in two sharply defined columns of cells (green line
in plot and green cells in cellular diagram). d, Suppression of mutant phenotypes is explained by
the mutual-inactivation model. Grey lines indicate positions where Sy = Bp(z), leading to Notch
activity peaks. Simultaneous reduction of both Notch and Delta production rates by half maintains
boundary positions (dotted lines) (Supplementary Fig. 10). e, f, Mutual inactivation facilitates
lateralinhibition patterning (e). In the absence of cooperativity in regulatory feedback, a standard
lateral-inhibition model [24] cannot pattern (f, left) but a model of lateral inhibition with mutual
inactivation can (f, right).
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Methods Summary

We assembled genetic constructs and cell lines by standard methods (Supplementary Table 1).
All cell lines used in the main text (Supplementary Table 2) were derived from T-REx-CHO-
K1(Invitrogen). Cell lines were constructed by sequential rounds of Lipofectamine 2000 (Invitrogen)
transfection and selection. We isolated stably transfected clones by limiting dilution or FACS.
Time-lapse microscopy was performed with cells plated on 24-well glass-bottom plates (MatTek).

ext

For plate-bound Delta experiments, IgG-Delta®* was adsorbed to the plate together with 5 yg ml—!
hamster fibronectin (Innovative Research) before cell plating. Before imaging, cells were switched to
a low-fluorescence medium, consisting of 5% FBS in o MEM lacking riboflavin, folic acid, phenol red
and vitamin B12. Movies were acquired using an Olympus IX81-ZDC microscope, equipped with an
environmental chamber at 37°C supplying 5% COs, a x20, numerical-aperture-0.7 objective, and
automated acquisition software (METAMORPH (version 7.5.6.0), Molecular Devices).

We obtained western blots for Gal4 using standard protocols. Blots were probed using rabbit anti-
Gal4 DBD primary antibody (sc-577, Santa Cruz Biotechnology; 1:200) followed by incubation with
horseradish peroxidaselabelled anti-rabbit IgG secondary antibody (Amersham; 1:2,000). Bands
were quantified using a VersaDoc gel imaging system (Bio-Rad). Quantitative PCR with reverse
transcription was performed using standard protocols based on the RNeasy kit (Qiagen) and the
iScript ¢cDNA synthesis kit (Bio-Rad).

We analysed co-culture experiments for YFP fluorescence using a FACScalibur flow cytometer
(Becton Dickinson) and standard protocols. Movies were analysed in several stages. First, individual
cell nuclei were identified in CFP images using a custom algorithm (MATLAB, MathWorks R2007a)
based on edge detection and thresholding of constitutively expressed H2B-cerulean fluorescence.
Then, for analysis of single-cell expression trajectories, individual nuclei were tracked across frames
using custom software (MATLAB, C) based on the softassign algorithm (Supplementary Informa-

tion). All single-cell trajectories were validated manually. For further details, see Supplementary

Information.
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Supplementary Information

Construct Name Promoter Gene Mammalian Selection Role in this work
pEV-UAS-H2B-citrine | UAS H2B-citrine Zeocin Reporter for
hN1-Gal4®"
pEV-12xCSL-H2B- 12xCSL H2B-citrine Zeocin Reporter for
citrine hN1
pcDNA3-hN1-modl | CMV hNotchl Neomycin hN1 construct
pcDNA3-hN1- cmv hN1-mcherry Neomycin hN1 construct
mcherry (used)
pPCDNA3-hNECD - cMV hNECD - Neomycin hN1-Gal4*"
Galg®" Galg™" construct
pcDNAS5/TO-hNICD- | CMV-TO hNICD-Gal4*" | Hygromycin hNICD-Gal4**"
Gal4®"
pcDNA5/TO-Delta- CMV-TO Delta-mcherry | Hygromycin Inducible
mcherry Delta-mCherry
pcDNAS5/TO-Gal4**" | CMV-TO Galg®" Hygromycin Inducible Gal4®"
pCS-H2B-cerulean cmv H2B-cerulean - Segmentation color
pcDNA6-UAS-H2B- UAS H2B-citrine Blasticidin Reporter in dual
citrine reporter line
pEV-12xCSL-H2B- 12xCSL H2B-mcherry Zeocin Reporter in dual
mcherry reporter line

Supplementary Table S1: Table of plasmids/constructs
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Stable Cell Line
T-REx-CHO-K1
(Invitrogen)

Parental Line

Transfected Construct

Antibiotic Selection

Blasticidin (10 ug/ml)

12xCSL-H2B-Citrine

T-REx-CHO-K1

pEV-12xCSL-H2B-Citrine

Zeocin (400 ug/ml), Blasticidin (10 ug/ml)

UAS-H2B-Citrine +
CMV-H2B-Cerulean

T-REx-CHO-K1

pEV-UAS-H2B-Citrine
pCS-H2B-Cerulean

Zeocin (400 ug/ml), Blasticidin (10 ug/ml)

hN1-No-Delta

12xCSL-H2B-Citrine

pcDNA3-hN1-mCherry

Zeocin (400 ug/ml), Blasticidin (10 ug/ml),
Geneticin (600 ug/ml)

hN1G4*"-No-Delta

UAS-H2B-Citrine +
CMV-Cerulean

esn

pcDNA3-hNECD-Gal4

Zeocin (400 ug/ml), Blasticidin (10 ug/ml),
Geneticin (600 ug/ml)

pcDNAS5-TO-DI-mCherry

Zeocin (400 ug/ml), Blasticidin (10 ug/ml),

hN1 hN1-No-Delta pCS-H2B-Cerulean Geneticin (600 ug/ml), Hygromycin (500 ug/ml)
Zeocin (400 ug/ml), Blasticidin (10 ug/ml),
hN1G4*" hN1G4*"-No-Delta pcDNA5-TO-DI-mCherry | Geneticin (600 ug/ml), Hygromycin (500 ug/ml)
TO-DMC T-REx-CHO-K1 pcDNAS5-TO-DI-mCherry Hygromycin (500 ug/ml), Blasticidin (10 ug/ml)
TO-DMC+hN1G4*" Hygromycin (500 ug/ml), Blasticidin (10 ug/ml),
(for fig. $9) TO-DMC pcDNA3-hNECD-Gal4®" Geneticin (600 ug/ml)
UAS-H2B-Citrine + Zeocin (400 ug/ml), Blasticidin (10 ug/ml),
TO-Gala®" CMV-H2B-Cerulean pcDNA5/TO-Gal4*" Hygromycin (500 ug/ml)

UAS-H2B-Citrine

CHO-K1 (CCL-61)

pcDNA-UAS-H2B-Citrine

Blasticidin (10 ug/ml)

UAS-H2B-Citrine +
12xCSL-H2B-mCherry
(dual reporter)

UAS-H2B-Citrine

pPEV-12xCSL-H2B-Citrine

Zeocin (400 ug/ml), Blasticidin (10ug/ml)

Supplementary Table S2: Table of cell lines
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Figure S1: hN1G4°*" and hN1 cell lines exhibit similar response. (A) The hN1 cell line stably
incorporates genes for full length hNotchl, Histone 2B (H2B)-Citrine (YFP) reporter controlled
by a synthetic 12XCSL promoter[30], and a Tet-inducible Delta-mCherry fusion protein. It also
constitutively express H2B-Cerulean (CFP) for image segmentation (not shown). Note that the hN1
cell line includes an mCherry domain fused to the C-terminus of hNotchl, which is not detectable
experimentally and therefore omitted in the diagram. These cells exhibit no detectable endogenous
Notch or Delta activities. (B) Notch response to trans-Delta in the hN1 cell line is similar to the
one in hN1G4*" (Fig. 2). Hill coefficient n = 1.6 (95% CIL: 0.6-2.5). (C-D) Co-linear response
of the 12xCSL and the UAS promoters. (C) A fusion protein consisting of Gal4**" and the Notch
Intracellular Domain (ICD) was transiently transfected into a CHO-K1 cell line containing two stably
integrated reporters: 12xCSL-H2B-Citrine and UAS-H2B-mCherry. (C) Total RFP fluorescence
versus total YFP fluorescence for transfected (blue circles) or untransfected (red circles) cells shows
a co-linear response of the two reporters to the fusion activator (plotted on a log-log scale). A
linear regression fit shows a slope of 0.92 (R? = 0.91), corresponding to a nearly linear relation
between the two reporters (red line). Background fluorescence (gray area) is due to basal leakiness
of reporters. Note that, due to the finite transfection efficiency of the transient transfection, only
some of the cells contain the fusion activator. Data points are extracted from fluorescence images
of cells, and analyzed using the techniques described in the text and methods. This result together
with the non-cooperative behavior of the Gal®*"-UAS system shown in Fig. S2 is consistent with a
non-cooperative activation of the 12xCSL promoter by Notch ICD.
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Figure S2 (previous page): The Gal4**"-UAS transcription factor-promoter interaction shows no
cooperativity. This figure describes a measurement of the relationship between Gal4®" concentration
and the transcriptional activity of its target UAS promoter. As in Fig. 3A and ref. 2, the approach
involves allowing the transcription factor to decay and/or dilute while following the activity of its
target promoter. (a) Schematic of cell line design. In this cell line, Gal4*" is expressed from a
tet-dependent promoter under the control of the doxycyline inducer. Gal4®" activates expression of
an H2B-YFP (Citrine) reporter gene. (b) Schematic of experimental design. Prior to the start of
the movie, cells were induced with a pulse of doxycycline, which was then washed out immediately
before the beginning of time-lapse movie recording. Consequently, Gal4*" was expressed, and then
allowed to degrade and/or dilute over time (red curve, bottom panel), while H2B-YFP fluorescence
was monitored in individual cell lineages (top panel). 7.1 denotes the effective decay rate of Gal4*s".
For large enough pulses of Gal4®" expression, the resulting data (shown schematically) would be
expected to show constant rates of production of YFP (slopes of green line), interrupted by a 2-fold
decrease in YFP levels at cell division events, due to partitioning of the YFP to daughter cells. To
avoid discontinuities inherent to cell division events, the “lost” fluorescence after division is replaced
(computationally) after each cell division event (dashed line and arrows). The slope of the resulting
(dashed) trace is directly related to the activity of the UAS promoter, shown in the inset of (d).
Here we focus on 7, the relative timescale required for the slope to fall from 73% to 23% of its
initial value as Gal4®™ decays (cf. Fig. 3A). (c) Observed YFP accumulation in individual cell
lineages. These traces have been corrected for cell division events as shown in (b). (d) Histogram of
measured 7 values determined from traces like those in (c) shows that, despite variability in initial
levels of expression, the timescales, T, required for turn off were relatively constant. (e) Using a
time-course Western blot against Gal4®*", we observed the Gal4*s™ half-life to be between 3-5 hours
(i.e. Yga1 ~ 0.2 —0.33). A calibration with varying levels of cell lysate was also run to test linearity
of measurement (bottom). (f) Inferring the Hill coefficient of the Gal4®"-UAS interaction based on
the measured values of 7 and 7ga1, using the relationship shown in equation, inset. The black line
shows how measurements of g, constrain the possible range of underlying Hill coefficients. The
dark gray region indicates the range of ny values consistent with variability in the measurement
of 7 in (f). The light gray region indicates the measured range of 7. The intersection between
the two gray regions provide the range of likely for ny values. This result shows that the effective
cooperativity of the Gal4d®s"-UAS interaction does not significantly exceed 1.
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Figure S3: TO-Delta-mCherry cells trans-activate as efficiently as OP9-Delta cells. We compared
the relative abilities of the TO-Delta-mCherry cell line, the OP9-Delta cell line, and Dyja¢e to trans-
activate Notch. Stromal OP9 cells stably expressing mDIl1 (OP9-Delta) and control OP9 cells not
expressing Delta[l] (both are a generous gift from Ellen Rothenberg) and inducible CHO TO-Delta-
mCherry cells were co-cultured with hN1G4°"-No-Delta cells (containing Notch and a reporter
only-see Fig. S5). Cells were plated at a ratio of (70% Delta cells :30% Notch cells) at cell density
of 1 x 10° cells/ml and incubated for 48 hours, and then imaged in an epifluorescence microscope.
TO-Delta-mCherry cells were either induced with 100ng/ml Dox or not induced, as indicated. A set
of controls with Notch reporter cells grown with or without plate-bound Delta (indicated by +Dpiate
and -Dpjate, respectively) were measured at the same time. Green and Black circles correspond
to YFP fluorescence of activated and non-activated Notch cells, respectively (n=259 cells in each
sample).
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Figure S4: Calibration of plate bound Delta. Plates were incubated with different concentrations
of IgG-Delta®™* (see methods for complete protocol). We determined the relationship between the
concentration of IgG-Delta®™* used during incubation and the amount of IgG-Delta®™* actually ad-
sorbed to the plate using a fluorescence binding assay. Right after incubation, plates were treated
with anti-human-IgG conjugated to Alexad88 (Invitrogen). Fluorescence levels were measured us-
ing a plate reader (Wallac 1420, Perkin-Elmer). As seen in the figure, the binding of IgG-Delta®**
starts to saturate at concentrations bigger than 2ug/ml and is well-fit by the Michaelis-Menten curve
Dypiate = HB:;’%, with K = 2.78 and where D,,omina is the concentration of IgG-Delta®t used
in the incubation step. In addition, to assess the spatial uniformity of Dyjqte, we took snapshots
of the bound antibody using a fluorescence microscope (not shown). We estimate the plate-plate
variation in Dpjaze at 10-20%.



A hN1G4"-No-Delta

hN1(ECD)-Gal4°"

uE H2B-Citrine

31

B Dox=10ng/ml

T=0 hrs

C Dox=0ng/ml

[Srhamatic |
{Schematic
E 3x102  Threshold x10?
graded model 5| 9graded model
2 =
2
o g
[ %k :
% 0 20
= o
o = .
.g 3 switch model ‘gz switch model
3 z
= 2
1
1
0 0 60 120 180 0
Notch response [AU]

YFP production rate [RFU/hour]

YFP production rate [RFU/hour]

12

TO-Delta-mCherry

mCherry

10

58

RFU]

—

YFP level

o N D

0 5 10 15
Time [hours]

Experimental

x10?

co-culture

8
o

oL 98
0 2 4 8 x10°
mean Delta- mCherry level [RFU]
x10°
4 Dplate 5 :: ¥
: g - e ¢ &
z - § %
3 £ s & %
2

0

001 027 049 074
0.050.19 035

097 1.16 1.44
Calibrated DpIale [ug/mil]

Figure S5 (caption on next page)



32

Figure S5 (previous page): Notch activity responds to trans-activation by cell-bound Delta in a
graded fashion. (A) In order to analyze trans-activation between cells, we co-cultured two cell lines,
one expressing hN1G4*" and a reporter (hN1G4°"-No-Delta cell line, left), and one containing
only inducible Delta-mCherry (TO-DMC cell line, right). See Table S2 for strain descriptions. (B)
Filmstrip of intercellular trans-activation taken from Movie S3. Here, the hN1G4°"-No-Delta cell
line (green nuclei) was co-cultured with TO-DMC cell line induced with 10ng/ml doxycycline to
express Delta-mCherry (red cytoplasmic staining). Cell lines were co-cultured at a density ratio of
80:20 (TO-DMC: hN1G4*"-No-Delta). Note the increasing Notch reporter fluorescence over time.
(C) In contrast, without induction (no doxycycline), we observed much lower activation of Delta-
mCherry expression and Notch activity in the reporter cell lines. Note that color (intensity) scales
in (B) and (C) are the same. (D) Single cell tracks from the two movies shown in B and C. (E)
Distinguishing between two possible models of activation in this experiment: graded and switch-like
(schematic). Both models assume that some fraction of the cells do not respond even at maximal
activation (here, we assume 20% ‘non responders’). In the graded model, the responding population
shows an increase of its median (black circles) response above a threshold, with higher induction
levels (coefficient of variation is kept fixed). In the switch-like model, cells are in either the ‘on’ or
‘off” states; only the fraction of cells occupying the ‘on’ state increases with Delta. Note that the two
models predict qualitatively different responses of the mean number of activated cells with increasing
Delta. (F) Experimental analysis of Notch reporter activation in individual cells (YFP production
rates) at different levels of mean Delta-mCherry induction. The green circles correspond to single
cell YFP production rates in the hN1G4°"-No-Delta cell line above the threshold, determined by
the basal expression without any Delta-mCherry induction in the TO-DMC cell line (a). The black
circles correspond to cells that do not respond or that respond at levels below the threshold. The
blue circles correspond to the median of activated cells. Error bars denote the 25 and 75 percentiles
of the activated cells distributions. The response is consistent with a graded, rather than switch-like,
model of trans-activation (e). (G) For comparison, a similar analysis was performed on the plate-
bound Delta induction data shown in Fig. 2 c¢,d. Here, individual data points correspond to rates
of YFP production. Note the graded, saturating response of the median response (blue data points
and line) to Dpjate. The red lines indicate a best fit of these median responses to a Hill function, with
95% confidence intervals bounded by the dashed red lines. The best fit Hill coefficient was 1.8 0.9,
in agreement with values obtained in Fig. 2D. Note that the relative fluorescence unit (RFU) scales
in (F) and (G) are different due to the use of different imaging conditions. Together, these results
show, first, that plate-bound and cell-expressed Delta trans-activate with similar cooperativity, and
second, that the analysis based on population average response shown in Fig. 2D for plate-bound
Delta produces equivalent results to the single-cell analysis of activation by cellular Delta.
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A Dp=1.16 ug/ml, no Dox

Dp=1.45 ug/ml, with Dox pulse

Dp=0 ug/ml, with Dox pulse

Figure S6: Induction at Dpjate=0 is small compared to higher Dpjate levels. (A) Filmstrips comparing
activation of hN1G4*" cells at Dpjate=0 and Dpjate=1.16 pg/ml (Fig. 2B). No induction is observed
at Dplate=0. (B) Filmstrips comparing activation of hN1G4°" cells induced with a doxycycline pulse
at Dplate=0 and Dplate:1.16ug/ ml (Fig. 2B). Ounly very few cells are induced in this case compared
to higher Dyjate. Thus, at this cell density transactivation between hN1G4*™" cells has only a small
effect (this is also seen in the average data in Fig. 3G).
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Figure S7: The hN1 cell line also shows an ultrasensitive response. hIN1 cells show delayed turn-on
in Notch signaling in response to slow decay of Delta-mCherry. Protocol is as described in Fig. 3A.
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Figure S8: Delta inactivation by Notch is required for sharp responses to cis-Delta at fixed threshold.
We simulated a model in which Delta inactivates Notch catalytically. In this model Delta is assumed
to be recycled back after interaction with Notch (See theoretical supplementary for derivation and
parameters). Note that, unlike the simulations based on the mutual inactivation model (Fig. 3H),
here the turn-on curves do not exhibit sharp responses, and the threshold positions vary with Dpjate-
Note that the range of Dpjate was scaled up to show the full response spectrum because a much
higher Dpiate is required to overcome the effect of Dg;s.
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Figure S9 (previous page): Notch cis-inactivates Delta. (A) Cells expressing hN1G4*" and a
UAS-H2B-Citrine reporter (hN1G4°"-No-Delta) were cocultured with cells expressing Delta (TO-
DMC) or cells expressing Notch and Delta (TO-Delta-mCherry+hN1G4°"). Note that TO-Delta-
mCherry+hN1G4" cell line does not contain a reporter. This enables measurement of the response
only from the Notch reporter cells. The level of Delta-mCherry in both of the inducing cell lines
is similar across a wide dox induction range (not shown) providing evidence that Notch does not
induce Delta degradation. Experimental procedure: Cells were co-cultured at the indicated ratios
and plated at 1 x 10° cells/ml. Cells were subjected to a 12 hour doxycycline pulse (weak induc-
tion) with different dox levels. FACS analysis was performed 24 hours after the dox pulse using
a FACSCalibur. (B) Fluorescence distributions in co-culture experiments. A total of 50,000 cells
were measured for each sample. Only cells containing the Notch reporter are shown. The activation
threshold (gray vertical line) is defined as a fluorescence level greater than that of 99.5% of negative
control (dox=0). (C) Fraction of cells above threshold for the co-culture experiments shown in (B).
Standard errors were estimated using a bootstrapping method by calculating the standard error of
20 non-overlapping subsamples. Note that the difference in the fraction of activated cells between
the two samples is largest at intermediate Delta induction. This is consistent with the mutual inac-
tivation model since the titration level of Notch should have larger effect at lower Delta expressions.
(D) Qualitatively similar results were obtained in a repeat performed on a different day (dark gray
vs light gray). Furthermore the relative reduction in activation of cells between the two samples
remains similar even when the relative fractions of the two cell lines are changed to 10% Delta (or
Delta+ Notch) cells and 90% Notch reporter cells.
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Figure S10 (previous page): Comparison of the mutual inactivation model to alternative models of
boundary formation. (A) Three alternative models are compared to the mutual inactivation model
discussed in the main text (blue). The ‘band-pass’ model (red) assumes that the Notch target pro-
moter responds only to a narrow range (“band”) of Notch signaling levels. This band-pass function
was represented by a product of activating and repressing Hill functions, each with Hill coefficient,
n = 8 (see section III of the supplementary modeling text). The high Hill coefficient is required to
match the sharpness of the pattern generated with that obtained in the mutual inactivation model.
For simplicity, no cis-inhibition was considered in this case. The second alternative model (“band-
pass + signal activates Notch”, green) adds an additional transcriptional feedback of Notch signaling
on the production rate of Notch, so that Notch signaling activates expression of Notch. Such feed-
back makes the outer edge of the pattern sharper. The third alternative model (magenta, “bandpass
+ signal downregulates Delta”) adds feedback through Delta (Notch signaling downregulates pro-
duction of Delta). This lateral inhibition type feedback tends to broaden the signal response. All
models are defined in the supplementary theory section. See Table S3 for parameter values. Note
that the two feedback models require fine tuning of the parameters to show a qualitative effect of
the feedbacks (i.e. differentiate the feedback models from the simple bandpass). The four different
panels correspond to Notch signaling profiles of the different models for N+ /-, D+/-; and N+/-
D+/- heterozygous mutants. All profiles were normalized to their maximal level to allow compari-
son of the boundary positions in different heterozygous mutant combinations. Top left corresponds
to the wild-type case. Top right: Only the mutual inactivation model (blue) is consistent with the
observed broad but sharp wing vein phenotypes of the N+ /- mutant[3]. Bottom left: The D+ /-
phenotype of the mutual inactivation model (blue), but not the other models, shows broadening
of the signaling profile (note the extended tails at a distance of 5 cell diameters on the x-axis)
and eliminates sharp side-bands (note that the central “dip” is an effect of the sharp kink in the
morphogen profile at 0, and would not occur with a more realistic morphogen profile). These effects
occur when the D+/- mutation makes the Delta production rate smaller than the Notch produc-
tion rate. See also discussion in (B). Bottom right: In the mutual inactivation model, but not the
other models, the double mutant N+-/- D+ /- regains the wild-type phenotype due to the ratiometric
property discussed in Fig. 4D, Box 1, and in the text. This suppression is independent of the exact
shape and length scale of the gradient. (B) Strong cis-inhibition selectively reduces signaling in the
D+/- mutant. Here we plot the 4 un-normalized mutant profiles for the mutual inactivation model
with a different parameter set (Table S3), with stronger cis-inhibition. The reporter level for the
N+/+ D+/- mutant is substantially smaller than those of the wild type and all others mutants at
all positions along the morphogen gradient. Such ubiquituous subthreshold activity of the reporter
can be expected to resemble the null Delta phenotype of thicker and less sharply defined veins. Note
that suppression in the double mutant persists for these new parameters, as shown by the invariance
of the positions of the bands between wild-type and N+ /- D+ /-. More generally, suppression in the
double mutant is maintained across a wide range of parameter values. (C) Positive feedback through
Notch has a modest effect on suppression in the double mutant. Here we considered a variant of
the mutual inactivation model in which Notch activity leads to increased expression of Notch. The
strength of this feedback is quantified by the parameter ky,, which denotes the amount of Notch
signaling necessary to half-maximally induce the additional Notch production (supplementary the-
ory section). Ounly intermediate values of ky, change the spatial pattern (i.e. broaden it) without
destroying its qualitative shape. Within this range, suppression is generally maintained except for
a modest expansion (<~ 1 cell) in the double mutant compared to wild-type.
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Figure S11: Steady-state sensitivity of the mutual inactivation switch. (A) The steady state levels
of Notch (blue) and Delta (red) are shown with respect to the production rate of Delta, Sp, in a
log-log plot, for the case presented in the Box Figure (values given in the Supplementary Table S3).
This plot reveals a rapid change in Notch and Delta for a small change in the Sp near the switch
location. (B) Steady-state sensitivity of the system, as defined in Box 1, for the conditions of plot
A. Note that the sensitivity of the system remains larger than 1 for a very broad range of Delta
production rates (to the right of the threshold).
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Figure S12: Negative controls show that Notch signaling is not affected by doxycycline, and growth
rate is not affected by doxycycline and Dpjate. (A) Cells expressing Notch (hN1G4*" -No-Delta)
were induced by Dplate to similar levels of Notch activity in the presence or absence of 100ng/ml
doxycycline (protocol was similar to the ones used in Fig.2), showing that Notch activity is not
influenced directly by doxycycine. (B) The growth rate of the Notch reporter cells was not affected
by presence of doxycycline. (C) Mean growth rate of the cells shown in Fig. 2C,D,E is not affected
by Dplate. Growth rate was defined as the rate of increase in the number of cells per field of view
(fov) over time.
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Figure S13: Relation of population average data (median over all segmented cells) and single cell
data. (A) Plots of total cellular fluorescence versus time for each of 26 non-overlapping cell lineages
from the movie shown in Figs. 3B, (blue lines). Sudden drops in total fluorescence are due to cell
division events, as in Fig. 3D. We compare the median of these 26 responses (cyan) to the median
over all cells (green). Note that this latter curve is identical to that shown in Fig. 3. For discussion
see supplementary methods. (B) Analysis of sharp responses to cis-Delta in individual cells. The
concentration of Delta-mCherry (red) and the shifted level of YFP (green, cf. Fig. 3e) are plotted as
a function of time for two different cell lineages. Delta-mCherry concentrations were estimated from
total Delta-mCherry fluorescence levels by assuming linear growth in cell volume during each cell
cycle. The Delta-mCherry data were fit to exponential decays (superimposed black lines). The YFP
response curves were fit to generate the turn-on function (superimposed black lines). The fit has four
free parameters: a constant offset, a final slope, a turn-on time (to,), and 7yise (See supplementary
methods). Inset: plots of resulting Hill function fits for the production rate of YFP as a function of
the concentration of Delta-mCherry. These fits produced best fit Hill coefficients of n = 22 410 and
n = 5.5+0.8 for cells 1 and 2, respectively. (C) Analysis of slope distributions of cis-Delta response
shows a switch-like, rather than graded behavior. All 26 single cell traces were divided into short, 6
hour segments. The response on each segment was smoothed and its maximal slope was measured.
Black and green points represent the values of individual slopes falling below or above a threshold,
respectively. Note that the fraction of activated (green) points, but not their median value, increases
over time, consistent with a switch-like model (Fig. 5e). The threshold value was determined from
the early time points where cells are off. A few segments far from the switching point were filtered
out, corresponding to saturating fluorescence levels or varying YFP expression at very late times
(YFP curves in (b)). Similar filtering did not affect the distribution of trans-activation rates (Fig
S5g). Blue circles represent the medians of the individual above-threshold (green) slopes in 30 hour
bins. Error bars represent the 25th to 75th percentiles of each distribution. Comparison with trans-
Delta distributions (Figs. Sbe,f,g) shows that the response to cis-Delta agrees with a threshold like
model.
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Figure S14: Initial Delta-mCherry levels correlate with turn-on time. (A) Notch signaling response
was measured for varying Delta-mCherry induction levels. The experimental setup was similar
to the scheme shown in Fig. 3A. Cells were grown on fixed Dpjate=0.74 pg/ml and subjected to
12 hour pulses of varying doxycycline concentrations, as indicated in (B). Increased induction levels
correspond to higher Delta-mCherry induction (B) and corresponding delays in the turn-on time (A).
When doxycycline is not removed from the media (darkest green), cells show a negligible response to
Dplate- (C) Here, to, was calculated for the data in (A) and (B). For each Delta-mCherry induction
level (same legend as in (B)), the Delta-mCherry fluorescence at the start of the movie (t=0) and at
ton are plotted. These data show that the time of Notch activation, toy, varies with the initial level of
Delta-mCherry expression, but occurs at an approximately constant Delta-mCherry concentration,
as expected from the experimental scheme in Fig. 3A. Note that fluorescence levels differ in this
figure from those in Fig. S13 due to variations in optical parameters (e.g. lamp intensity) between
the two experiments.
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Figure S15: Distribution of activated cells at different Dyjate shows graded response. Distributions
of hN1G4°" cells after onset of induction (t=50 hours) in Figure 3G. Activated cells (green circles)
respond in a graded fashion to Dypjate levels. Note that even at maximal activation there is a fraction
of non-responding cells (black circles). Such variable behavior typically occurs due to silencing of
viral promoters such as the CMV promoter used here. The blue circles represent the median of
activated cells. Note that in figure 2C we plot the median of all cells (green and black circles). The
median of all cells exhibits a similar slope to the median of activated cells at longer times, but it
shows an initial lag in the response. This lag occurs since the median of all cells remains unchanged
until more than 50% of the cells respond to Dyplate. See also discussion in Fig. S5.
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Figure S16: Effect of finite lifetimes and expression delays in the model. Time traces of Notch (blue),
Delta (red), and the reporter (green) obtained from numerical simulations of the cis-inhibition model.
Solid and dashed green lines are reporter traces for different parameter values, indicated on plot.
(A) A 100x increase in the lifetime of the reporter mRNA leads to a delay of a few hours in the
turn-on of reporter expression. (B) A similar effect is found for a 100x increase in the lifetime of
the Signal. (C) A 1-hour delay in the expression of the reporter from the activating signal leads to
a corresponding delay in reporter turn-on. (D) Despite these time shifts, the dynamic sensitivity of
the system, defined as the logarithmic derivative of the Signal with respect to the total amount of
Delta at any given time instant, is mostly unchanged. The sensitivity coefficient, shown in the bar
plot for the different cases presented in plots A-C, increases at most 30% for the smallest lifetimes,
and is effectively constant in the presence of delay in the reporter expression.
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Figure S17: Lateral inhibition model with mutual inactivation (See theoretical supplementary sec-
tion) facilitates broader range of patterns. Increasing the strength of mutual inactivation (reduced
k.) enables patterning (second panel), as well as the formation of alternative patterns in which cells
with high Delta levels can stably co-exist next to each other (third and fourth panels). Such alter-

native patterns cannot be achieved using standard lateral inhibition model (even in the presence of
cooperative feedback).
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Supplementary Methods
Description of genetic constructs

All genetic constructs used in this paper were constructed using standard cloning and PCR tech-
niques. All constructs were fully sequenced and the maps, sequences and construction details are
available upon request. We provide below a description of the sources for vectors and DNA fragments
used, as well as the main construction steps.

Reporter plasmids pEV-UAS-H2B-Citrine and pEV-12xCSL-H2B-Citrine were constructed as
follows: The backbone vector pEV was constructed in the lab by amplifying pSecTagA without the
secretion tag Murine Ig kappa-chain V-J2-C (Invitrogen, V900-20) and religating it with the Sacll
restriction site. The UAS-H2B-citrine and 12xCSL-H2B-Citrine were amplified or subcloned from
earlier constructs and they contain the following DNA fragments: H2B-citrine originally obtained
from pCS H2B citrine (a gift from Sean Megason and Scott Fraser[4]). UAS was obtained from
ULyn-GFP (a gift from Scott Fraser[5]). 12xCSL was amplified from 12xCSL DsRedExpress (a gift
from Urban Lendahl[6]).

pcDNA3-hN1-modl was constructed by first adding an Nhel site to pcDNA3 hN1 (a gift from
Jon Aster[7]). To add this Nhel site we amplified the DNA fragment between the NotI to the
Xhol site and included the Nhel site in the reverse primer. The resulting amplicon was ligated into
pcDNA3-hNI cut with the same restriction sites. This modified plasmid was then used to create
pcDNAS3-hN1-mCherry by inserting mCherry originally amplified from pFA6-link-mcherry-SpHis5
(a gift from Roger Tsien and Kurt Thorn[8,9]) into the Nhel and Xhol sites.

pcDNA3-hNECD-Gal4®*"™ was constructed by cutting pcDNA3-hN1-mod1l with NotI and Xhol
to remove hNICD. Gal4®*"™ was constructed by PCR amplification from Saccharomyces cerevisiae as
described in Ptashne et al [10]. Gal4®™ amplified with NotI and Sall restriction sites was inserted
into the cut vector in the sites above. We note here that Gal4®s" was chosen over the more popular
Gal4-VP16, since it does not use the viral activator VP16 which is extremely strong and generates

high background signal.



47

pcDNA5/TO-hNICD-Gal4*" was constructed using the pcDNA5/TO vector (Invitrogen , V1033-
20) cut with BamHI and NotI and by amplifying hNICD-Gal4*" with the same restriction sites from
pcDNA3-hN1-Gal4®**" (a construct not used here but was constructed by introducing Gald®"™ into
pcDNA3-hN1-mod1l). pcDNA5/TO-Delta-mCherry was constructed by first modifying pcDNA5/TO
(Invitrogen, V1033-20) to add a Nhel restriction site by cutting with HindIII and BamHI and then
ligating in 2 annealed oligos, which contained the Nhel site. The vector was then digested with Nhel
and BamHI. Delta-mCherry was cut from a previously constructed vector with the same restriction
sites as pcDNA5/TO. Delta originally came from pBOS-rDeltal[11] (a gift from Gerry Weinmaster)
and was fused to mCherry using fusion PCR. The overlapping sequence between the two fused pro-
teins is: GTGTTATAGCGACTGAGGT Tgtgagcaagggegaggagga. pcDNAS/TO-Gald*s™ was con-
structed by removal of the mCherry from pcDNA5/TO-Gal4**"-mCherry through BamHI and NotI
digestion. A small DNA fragment (made from annealed oligos) containing a stop codon as well as
the BamHI and NotI overhangs was ligated into the cut pcDNA5/TO-Gal4**?-mCherry vector. The
pcDNA5/TO-Gal4*"-mCherry vector was originally created by first performing a fusion PCR of
Gal4*™ and mCherry (sources for Gal4**® and mCherry previously described). The PCR product
was ligated into the pcDNA5/TO vector from Invitrogen. pCS-H2B-cerulean was a gift from Sean
Megason and Scott Fraser[4].

pcDNAG-UAS-H2B-Citrine was constructed by subcloning UAS-H2B-citrine from pEV-UAS-
H2B-Citrine into pcDNA6/ V5-HisA (Invitrogen, V220-01) using Mfel and BstBI restriction sites.
pEV-12xCSL-H2B-mcherry was constructed by amplifying the 12xCSL promoter from 12xCSL
DsRedExpress then fusing it to H2B-mCherry.The resulting amplicon was digested with Mfel and
BglII and inserted into pEV between Mfel and BamHI. H2B-mCherry was constructed by fusion

PCR of H2B and mCherry fragments.

Generation of stable cell lines and cell-culture protocols

As a base cell line we used T-REx-CHO-K1 cells (Chinese Hamster Ovary cells supporting the T-

REx inducible system, Invitrogen) which were grown in Alpha MEM Earle’s Salts (Irvine Scientific)
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supplemented with 10% Tet System Approved FBS (Clontech), 100 U/ml penicillin -100 ug/ml
streptomycin - 0.292 mg/ml L-glutamine (Gibco), and 10 ug/ml Blasticidin (InvivoGen) at 37°C
in the presence of 5% CO2 under a humidified atmosphere. For construction of stable cell lines,
cells were plated 24 h prior to transfection in 24 well tissue culture treated plates such that 80-95%
confluency would be reached by the time of transfection. Cells were transfected using Lipofectamine
2000 (Invitrogen) as per the manufacturer’s instructions. The amount of total DNA used was 800
ng/well: 100 ng of DNA containing the desired cassette + 700 ng empty plasmid (pOri).

Stable cell lines containing either the 12xCSL-H2B-Citrine or UAS-H2B-Citrine reporters were
created by transfection of pEV-12xCSL-H2B-Citrine or pEV-UAS-H2B-Citrine into T-REx-CHO-K1
cells. A plasmid containing H2B-Cerulean under constitutive CMV promoter (pCS-H2B-Cerulean)
was co-transfected together with the pEV-UAS-H2B-Citrine. Positive cells were selected by replating
transfected cells into 6 well tissue culture treated plates with media containing 400 pg/ml Zeocin
(Invitrogen) and 10 pug/ml Blasticidin 24 h post-transfection. Cells transfected with DNA lacking an
antibiotic resistance gene were used as a control to monitor positive cell selection. After the control
cells died, and after several passages of the selecting cells, positive cell populations were either sorted
by FACS (FACSAria, Beckman Dickinson) or diluted in 96 well tissue culture treated plates in order
to obtain single clones to test for reporter activity. For FACS, cells were transiently transfected
with pEF-GV-ICD (a plasmid containing a fusion of Gal4-VP16 and Notch ICD) 24 h prior to cell
analysis and sorting. Individual cells expressing high levels of citrine were sorted into single wells in
a 96 well tissue culture treated plates. Alternatively, positive cell populations were plated into 96
well tissue culture treated plates at 0.2 cells/well in order to increase the likelihood of obtaining a
single cell/well. Individual cells were grown in selection media until enough cells were available to test
reporter activity. Each clonal cell population was tested by transient transfection with pEF-GV-ICD,
and clones with the best dynamic range of reporter induction were identified by microscopy and used
for the next round of stable cell line creation. For the addition of Notch constructs into the two stable
reporter cell lines constructed above, plasmids containing either hN1 fused to mCherry (pcDNA3-

hN1-mCherry) or hN1G4*™ (pcDNA3-hNECD-Gal4*") were transfected into the 12xCSL-H2B-
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Citrine or UAS-H2B-Citrine reporter cell lines, respectively. Positive cell populations were selected
as previously described with selection media that contained 400 pug/ml Zeocin, 10 pg/ml Blasticidin,
and 600 ug/ml Geneticin (Invitrogen). Clonal cell populations were obtained by FACS or dilution as
detailed above. Positive cell populations used for FACS were plated in wells treated with 2.5 pug/ml
IgG-Delta®* 48 hours before sorting. Individual cells expressing high levels of citrine were sorted.

ext and

Clones were tested by plating cells in wells treated with or without 2.5 pg/ml IgG-Delta
monitoring activation of the 12xCSL-H2B-Citrine or UAS-H2B-Citrine reporter by microscopy 48-72
hours post-Delta exposure. Single hN1 and hN1G4*" clones with minimal H2B-Citrine background
expression and high reporter activation when exposed to Delta were selected for further use.

To create the final cell lines hN1 and hN1G4°" shown schematically in Figs. 1C, S1, a plasmid
expressing DI-mCherry under an inducible promoter (pcDNA-TO-DIl-mCherry) was transfected into
each of these cell lines. A plasmid containing H2B-Cerulean under constitutive CMV promoter (pCS-
H2B-Cerulean) was co-transfected with the Delta-mCherry into the hN1 cell line. Cells were grown
in selection media containing 400 ug/ml Zeocin, 10 ug/ml Blasticidin, 600 ug/ml Geneticin, and
500 pg/ml Hygromycin (InvivoGen) for each of the hN1 cell lines. After selection, cells were either
treated with 1 pg/ml doxycyclin and subjected to FACS or diluted into 96 well tissue culture treated
plates as previously described. For FACS; single cells expressing high levels of mCherry were sorted.
Clonal cell populations were grown and tested for low mCherry background expression in the absence
of doxycycline and good inducibility of mCherry expression when exposed to 1 pug/ml doxycycline.
Optimal clones for each of the above cell lines were identified by microscopy and used in further
experiments. A separate cell line containing only inducible Delta-mCherry (used in co-culture ex-
periments), was created by transfecting T-REx-CHO-K1 cells with pcDNA-TO-DIl-mCherry. Clones
were generated in a similar process as above albeit with a selection media containing only Blasticidin
and Hygromycin. This cell line was used to generate the TO-DMC-+hN1G4*" used in Fig. S9 by
stably transfecting into it the pcDNA3-hNECD-Gal4°" construct (600 pg/ml Geneticin). We note
that the fusion to mCherry could in principle affect various activities of Delta. Therefore, we verified

that Delta-mCherry can trans-activate Notch reporter cells efficiently (as shown in Fig. S3). This
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does not rule out the possibility that other activities or properties of Delta may be affected by the
fusion.

For creation of the TO-Gal4®" cell line, the UAS-H2B-Citrine + CMV-H2B-Cerulean cell line was
transfected with the pcDNA5/TO-Gal4®s" plasmid. Cells were grown in selection media containing
400 pg/ml Zeocin, 10 pg/ml Blasticidin, and 500 pg/ml Hygromycin. After selection, cells were
diluted into 96 well tissue culture treated plates to obtain single clones. Clones were tested for
Gal4*™ inducibility by plating cells either with or without 1 pg/ml doxycycline. The clone with
the lowest Citrine background expression in the absence of doxycycline and good inducible Citrine
expression in the presence of doxycycline was chosen for further use in experiments.

For production of a double reporter cell line used in Figure S1, CHO-K1 cells (without T-REx,
ATCC, CCL-61) were first transfected with pcDNA-UAS-H2B-Cit. A positive cell population was
selected with media containing 10 pg/ml Blasticidin. After the initial selection, positive clones were
obtained by FACS as previously described for the individual reporter stable cell lines. Each clone was
then tested by transfection with pEF-GV-ICD, and a clone with the best reporter dynamic range was
identified by microscopy and used to transfect in pEV-12xCSL-H2B-mCherry. Transfected cells were
selected in media containing 10 pg/ml Blasticidin and 400 pg/ml Zeocin. A positive double reporter
clone was identified by the method described above. In the clone chosen for further experiments,
both reporters showed minimal background activation and high levels of Citrine and mCherry when

transfected with pEF-GV-ICD.

Measurements of relative Notch expression levels in hN1G4°" and hIN1

To estimate the levels of ectopically expressed Notch receptors in the hN1G4*" and hN1 we per-
formed qRT-PCR on the two cell lines in which levels of Notch mRNA were compared to levels of
endogenous S-actin mRNA. We found Notch levels 2.3 £ 0.15 and 4.5 £ 0.4-fold smaller than those
of B-actin in the hN1G4" and hN1 cell lines , respectively. These results are within the physio-
logical range of endogenous Notch receptors as observed in early T-cell progenitors where Notch is

active[12]. See below for details of qRT-PCR analysis.
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Description of experimental protocols and microscopy

Delta plating, preparation of cells for imaging, and calibration assay for IgG-Delta®*t.

Protocol for setting up a time lapse movie: Cells were plated on a glass bottom 24 well plate (Mattek).
To bind IgG-Delta®™* to the plate, IgG-Delta®™* was serially diluted to different concentrations in cold
1xPBS (Invitrogen) containing 5ug/ml hamster fibronectin (Innovative Research). 5004l of diluted
IgG-Delta®™*t was incubated at 4°C for 1 hour on a rocker. Cells were trypsinized and diluted to
2 x 10* cells/ml (1 x 10° cells/ml for coculture experiments) in growth medium containing 100ng/ml
doxycycline (Sigma Aldrich). The cells were plated immediately after the incubation onto the 24
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well plate containing IgG-Delta®". Prior to imaging, wells were washed twice with fresh media and
media was replaced with low fluorescence imaging media a MEM without Phenol red, riboflavin, folic
acid, and vitamin B12 (Invitrogen, custom made) and with 5% FBS and 1% L-glutamine+Penicilin-
Streptomycin 100x mix (Invitrogen). Calibration of the IgG-Delta®* bound to the plates is discussed

in the captions of Fig. S4.

Microscopy details: Cells were imaged in an Olympus IX81-ZDC microscope equipped with an
AST 2000XY stage and a cooled back-thinned iKon-M CCD camera (Andor). All movies were taken
with a 20x, 0.7NA objective. The microscope is also equipped with an incubator that maintains the
temperature at 37C and with an environmental chamber with a humidified 5% CO2 flow (custom
made). The microscopy setup is automatically controlled using commercial Metamorph (Molecular
Devices) software. 48 stage positions (2 in each well) are set up manually and their coordinates are
stored in the computer. In each position, the program first focuses using the Zero Drift Control
module (Olympus Inc.), then takes a DIC image, and three fluorescent images (mCherry, citrine,
CFP). Images are taken every 20 minutes for all positions. Typical total movie time is approximately

48 hours.

Western Blot: TO-Gald®" cells were plated in wells of a 6-well tissue culture treated plate at
5x105 cells/well. The cells were induced with 100 ng/ml of doxycycline. After 24 hr of induction,

one well of cells was harvested (0 hr post-doxycycline removal) while the doxycycline was washed out
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of 4 additional wells. Those cells were harvested at 1 hr, 2hr, 4 hr and 6hr post-doxycycline removal
(an uninduced sample was used as a control). The harvested cells were counted, and 4x106cells were
pelleted and lysed with 200ul1 1.5x complete SDS loading buffer (76.7 mM Tris-HCL, pH 6.8, 1.5%
(w/v) SDS, 15% (v/v) Glycerol, 0.01% (w/v) Bromophenol blue, 30 mM Dithiothreitol (DTT), 213.8
mM 2-Mercaptoethanol, 1x protease inhibitors (Roche Applied Science), 6 mM ethylenediaminete-
traacetic acid (EDTA)). Cellular extracts were boiled for 5 min at 95°C, vortexed, chilled on ice and
centrifuged in a Beckman TLA-100.3 ultracentrifuge rotor at 55,000 rpm for 1 h at 4°C. For each
sample, 10ul of supernatant was resolved in triplicate on a NuPAGE Novex 4-12% Bis-Tris Midi Gel
(Invitrogen) and transferred to a 0.2 pum nitrocellulose membrane using the iBlot from Invitrogen
(a standard curve made from serial dilutions of the 0 hr post-doxycycline sample was also included
on the gel). The membrane was blocked with 5% (w/v) dry milk and 2% (w/v) BSA in 1xTBST
(20 mM Tris base, 137 mM sodium chloride, 0.1% (v/v) Tween 20, pH 7.6), incubated with primary
antibody in blocking buffer, followed by incubation with horseradish peroxidase-labeled secondary
antibody in blocking buffer. SuperSignal West Femto chemiluminescent substrate kit was used for
detection (Pierce). The following primary antibody was used: rabbit anti-Gal4 DBD (sc-577, Santa
Cruz Biotechnology, 1:200). The secondary antibody used was horseradish peroxidase linked anti-
rabbit IgG (Amersham, 1:2000). Protein bands were visualized on a VersaDoc gel imaging system

(Bio-Rad Laboratories).

qRT-PCR: Notch mRNA levels in the hN1 and hN1G4" cells were compared to endogenous
Notch mRNA observed in early T-cell progenitors. RNA was isolated from hIN1 and hN1G4" cells
using the RNeasy kit (Qiagen). ¢cDNA was subsequently synthesized from 1ug of RNA using the
iScript cDNA Synthesis kit (Bio-Rad). From a 20ul reaction, 2ul of cDNA was used to assess Notch

and B-Actin mRNA levels using real-time qRT-PCR. Primer and probe sets used were as follows:
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hNotchl
forward 5-ATGAGTTCCAGTGCGAGT-3’
reverse 5 -TGTAAGTGTTGGGTCCGT-3’

probe 5-FAM-AGATGCCCAGTGAAGCCCGT-BIk_FQ-3’

[B-actin
forward 5 -ACTGGGACGATATGGAGAAG-3’
reverse 5 -GGTCATCTTTTCACGGTTGG-3’

probe 5-HEX-ACCACACCTTCTACAACGAGCTGC-BIk_FQ-3’

Flow cytometry: TO-DMC or TO-DMC+ hN1G4%" “sending” cells were co-cultured with hN1G4°"
- No-Delta “receiving” cells in a transactivation assay. Co-cultures were plated at 10° cells/well in
a 24 well plate at a ratio of 20% Delta cells to 80% Notch reporter cells. For each set of co-cultures,
a 12 hr pulse of 1.6 ng/ml and 100 ng/ml doxycycline was performed (a well with no doxycycline
served as a control). After doxycycline removal, the cells were washed 3x with 1xPBS (GIBCO)
followed by addition of growth medium. Cells were incubated at 37°C, 5% CO4 for an additional 24
hr before harvesting for flow cytometry analysis. Cells were trypsinized and diluted in 500u] analysis
buffer (1x Hank’s Balanced Salt Solution (GIBCO), 2.5 mg/ml BSA (w/v)). After filtering through
a 40pm mesh, the co-cultured cells were analyzed for YFP fluorescence using a FACScalibur flow

cytometer (Becton Dickinson).

Image and data analysis

Segmentation of images CFP images were used for automated segmentation of each frame of
the movie. Segmentation was performed in a similar manner to previously described methods [2].
Briefly, each image was first subjected to an edge detection algorithm using Matlab. Closed edges
were selected and several morphological and intensity criteria including total pixel area and mean
fluorescence intensity level were used to identify the nuclei of the cells. The segmented image was
used as a mask to calculate YFP and CFP fluorescence as well as centroid position for each nucleus.

In some cases manual correction was applied to the segmented images. mCherry levels for the single
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cell tracks in Fig. 3E were obtained by manual segmentation of the entire cell, in order to include

total mCherry fluorescence.

Generating population averaged response curves To generate the YFP response curve for
each movie (such as the ones in Figs. 2C and 3C), the total YFP fluorescence of each cell was
calculated and background fluorescence was subtracted. Each data point on Figs. 2C and 3C
represent the median of this total fluorescence per cell over all cells of one frame in the movie.
The median, rather than the mean, was used for two reasons: (1) The median is less sensitive to
occasional bright outliers such as dead cells and multinucleated cells which may offset the mean. (2)
Median fluorescence taken in each frame roughly follows the response of the median cell lineage (see
below), and thus better captures the sharp turn on feature shown in Fig. 3C-H. As shown in Fig.
S13, the median curve essentially follows one of the single cell tracks for a while before switching to
the next median curve. Hence, for such 'turn-on response’ as in Fig. 3C, the median curve stays low
until half the cells switch on. It then assumes a slope similar to that of the cells that have already
responded. Thus, the rise time of the median curve provides a much better estimation of the median
of the single cell lineage rise times than does the rise time of the mean curve (not shown).

The mean Delta-mCherry decay curve in Fig. 3C was calculated by taking the total mCherry
level above background for each frame and dividing by the number of cells in that frame.

Single cell tracking was performed using a modified version of the Soft Assign algorithm 2,13

and was verified and corrected manually for each cell lineage tracked.

Data analysis Hill coefficients on Figs 2D, S1 were obtained by fitting the data to a Hill function

of theform y = A where x is the Dpjate value, y is the YFP production rate value, and A, K,

and n are free fitting parameters. The fit was performed using a weighted non-linear least squares
algorithm (Matlab). The weights vector was taken to be ﬁ, where y; is the production rate value
for the i*" data point and k is a minimal error parameter (typically 10% of max(y;)). This weighting

takes into account both logarithmic errors (assuming a log-normal distribution of y;’s) and smaller

fixed errors (i.e errors not proportional to y; levels).We verified that the value obtained for the Hill
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coefficients, n, was not sensitive to the exact fitting procedure and parameters. The single cell rise
times for the distribution obtained in Fig. 3F were calculated by fitting the shifted YFP curves

(such as the ones in Fig. 3E) to the following functional form:

_ 1 (Ltexp(=(t—t)) .
y(H) =S+ 71 ( 1+ exp(yt.) ) - o

Here, y represent the shifted YFP fluorescence level, ¢, represent time, t. is the time at which the
response turns on (i.e the ‘knee’), 7, quantifies the sharpness of turn-on, S is the maximal slope
at > t., and ¢ = y(0) is a constant. This functional form is derived in the following way: We first
assume an effective Hill function response of the production rate of YFP (dy/dt) to the level of

Delta-mCherry (DMC):
Y S ©)
dt k' 4+ (DMC)™

Here, m and k; represent the effective Hill coefficient and the Delta-mCherry value that gives half-
maximal expression, respectively. We assume an exponential decay of Delta-mCherry (i.e. Dgs):
DMC = Dgexp(—~ot) where Dy and 7o are initial Delta-mCherry level and degradation rate,
respectively. Hence the YFP production rate as a function of time is given by:

dy 1
dt "1+ exp(—y(t —t.))

3)

m
. Here, v = m~yo and exp(vyt.) = (%) , The functional form in eq. (1) is obtained by integrating

eq. (2) over time. Fitting of the data to eq. (1) was performed similarly to the Hill function fits
described above. The rise time is then given by 7.5 = 2/v. We note that while eq. (1) is only an
approximation to the actual response curve it fits the data well and enables estimation of rise times

in simulated data.
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All simulations (Figs. 3H, 4 B,C,D,G, and S5) were performed using the ode15s ordinary differential equation solver of Matlab. The
following equations and parameters were used in the simulations:

Figure Equations Parameters Initial conditions and remarks
3H Egs. 8-10,12 in theoretical y=0.1,ys =30.l, Yr=0.1,ke =2, k=2, kps=1500, By =1, Bp =0, | Dimensional units*. Dy = 200, Ny = ,f: s
supplementary Pr =1.8X10°, p = 2, D,, ={0.063, 0.084, 0.11, 0.15, 0.20, 0.26, 0.35, Y e ke
0.46,0.62,0.82, 1.1, 1.4}
Box, S11 | Egs. 8-10, 12 in theoretical y=0.1,ys=1.0, D=0, k; =10, k. = 1, By = 20, Bp = {various from | Dimensional units*. Plot displays status of cell
supplementary 0 to 40} 1 (left column of equations) with D, and N, = 0.
4B Egs. 21-23 in theoretical y=0.1,¥s =10, k; =10, k. ={0.5, 1, 10}, By = 20, 51()1) = {various Dimensional units*.
supplementary from 0to 34}, B = 1358 "
4C Egs. 24-27 in theoretical y=0.1,ys =10, g =0.05, k; =5, k. = .25, ks = 1500, By = 10, B | Dimensional units*. Use periodic boundary
supplementary =17.5,pr=150,p=2,n=1,m=1,x,=7 conditions.
4F,517 Egs. 50-52 in theoretical T=1, k¢ ={0.55,0.1,0.05} krs = 3€5, By =200, B, = 1000, Bz =3000, | Dimensionless, as described in theoretical
supplementary m=1p=1 supplementary. Periodic boundary conditions.
D(0),N(0),R(0) were randomly distributed
between 0 and S, Sy, Br, respectively.
S8 Egs. 17-20 in theoretical y=0.1,ys =80.1, Yr=0.1,k =2, k.=.2, ks =1500, By =1, Bp =0, | pimensional units*. Dy = 200, Ny = %_
supplementary Pr =1.8X10°, p =2, D, ={3.16, 4.76, 7.15, 10.8, 16.2, 24.3, 36.6, e TR
55.1,82.8}
S10A blue: Egs. 24-27 in blue: y =0.1, 5 = 1.0, yg = 0.05, k; = 5, k. = .25, kgs = 1500, By = Dimensional units*
Top theoretical supplementary 10,85 =17.5Br=75p=2,x,=7
Left red: Eqs. 32-35 in theoretical | red:y = 0.1, ys = 1.0, yg = 0.05, k; = 5, k;, = 1750, By = 10, B3 =
supplementary 17.5,Pr=75p=8,q=8,x,=7
green: Egs. 36-39in green::y =0.1,ys =10, yg =0.05, k; =5, k;, = 1750, k; = 600, By =
theoretical supplementary 0.25, B =19.75,83 =17.5, Br =75,p=8,q=8,n=2,x, = 7
"r‘]agen'f?i lqu- 4|°'43 in magenta : y = 0.1, yg = 1.0, yg = 0.05, k; = 5, k;, = 1750, kg, = 1800,
theoretical supplementary By=10,65=35[r=75p=8,q=8m=22x=7
S10A Same as top left red: same as top left except Sy =5 Dimensional units*
.:)F;n green: same as top left except By =0.125, B, = 9.875
18
magenta: same as top left except By =5
S10A Same as top left red: same as top left except ) =8.75 Dimensional units*
f;)ftttom green: same as top left except [)’B =8.75
magenta: same as top left except B3 =17.5
S10A Same as top left red: same as top left except By =5, 5 = 8.75 Dimensional units*
;r;tr:tom green: same as top left except Sy =0.125, By, = 9.875, BD" =8.75
magenta: same as top left except By =5, B3 =17.5
S10B Egs. 24-27 black: y =0.1, y5 = 1.0, yg = 0.05, k¢ = 25, k. = .05, kgs = 1500, By = | Dimensional units*
10,85 =15r=75p=1,% =7
orange: same as black except Sy =5
light blue: same as black except [fB =75
gray: same as black except By =5, 5 =7.5
sioc Egs. 28-31 y=0.1,¥5 =10, yg =0.05, k; =5, k. = .25, kgs = 1500, By =5, 5 | Dimensional units*
=5,85=17.5,Br =75, =2, o = 7, nn=1, ky, as indicated in
legend.
S16A Egs: 6-10 ¥=0.1,y5=0.1,y,=0.1, k; =2, k. =.2, kps = 1500, Sy = 1, Bp =0, | Dimensional units*
Br = 1.8X10%, B, = {0.1,10}, 13, = {0.1,10}, p=2, D, =1
S168 Egs: 6-10 y=0.1,ys={0.1,10}, yg = 0.1, k; = 2, k. = .2, kgs = {1500,1.5}, By Dimensional units*
=1, Bp =0, fr = 1.8X10%, B, = 0.1, ¥, = 0.1,p=2,D, =1
S168 Egs: 6-10 y=0.1,y5=0.1,y5=0.1, k. =2, k. =.2, kgs = 1500, By =1, Bp =0, | Dimensional units*. Delay introduced in eq. 7

Br =1.8X10%, By = 0.1, 7, = 0.1, p=2, D, =1, 1={0,1}

for the translation step. Used dde23 in Matlab.

* Dimensional units: decay rates, ¥, ¥s, ¥ are in hours™, production rates Sy, Bp, Brin RFU/hour, affinities kg, k;, ky, krain RFU, kcin RFU x

hours, x; in cell diameters, D,and k; in effective plate bound concentrations. Here Relative Fluorescent Units [RFU] replace concentrations

which are unknown.

Supplementary Table S3: Simulation parameters
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Supplementary Material — Theory

Cells responding to trans-Delta (D) and cis-Delta (D)

Model with mutual inactivation of Delta and Notch in cis Let us first consider the case
where cells containing Notch (N;), Delta (D;), and a Reporter of Notch signaling activity (R;) are

subjected to Dpiate (Dp). The reactions we consider are the following:

N; + D, = [N;D,] — S;+D, trans-activation, with association/dissociation rates k3 and
cleavage rate kg

N, +D; = [N;D;] - @ cis—inhibition, with association/dissociation rates k;jct and inacti-
vation/dilution rate vy p

S; —R; Signal activation of reporter

The first reaction represents the interaction of Notch with plate-bound Delta to form a complex
that can then either dissociate or be cleaved to release the intracellular domain of Notch, denoted
S;. The dynamics of D,, is not relevant for the results presented below, thus we consider D, not to
be consumed in this binding reaction, so that its level is constant. The second reaction describes
cis-inhibition with mutual inactivation of Notch and Delta. Note that in this subsubsection* we
ignore the interaction between Delta in the cell and Notch in neighboring cells (¢rans-Notch), which
is explicitly accounted for in the model presented in the Box. This interaction will be considered
in subsubsection® II below. The third reaction represents the combined process in which the Notch
intracellular domain translocates into the nucleus, binds with the CSL complex, and induces the
expression of the reporter mRNA (mpg). This process is represented below phenomenologically by

an increasing Hill function in the reporter production term.
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These reactions are translated to the following set of ordinary differential equations:

N; = Bx — wNi — (ki N;D,, — kp [N;Dp)]) — (k& N:D; — kg [N: D)) (1)

D; = Bp —wD; — (k& N;D; — kg [N;D;]) (2)

[NiDy] = ks NiDp — ki [NiDp] = ks [N; D)) (3)

[N:D;] = k& N:D; — kg [NiDy] — ynp [NiDi] (4)

Si = ks [N;:Dy] — 7sS; (5)

thr; = fa (Si; B, P, krs) — Ymmri (6)

R; = agmr; — R (7)

The function fa (Si; Bm,p, krs) is an activating Hill function of the form Bm%ﬁsg" We assume fast

cleavage of the Notch-Dy;4¢. complex, which allows us to apply the quasi-steady-state approximation
to its dynamics ([Nibp] ~ 0). Furthermore, we assume that Notch binds to cis-Delta irreversibly
(kg = 0), and in that way the dynamics of Notch does no longer depend on the [N;D;] complex.
Finally, we consider that the relaxation time of the receptor mRNA is much shorter than the protein

relaxation times. With these approximations, the model is reduced to

. D D.
N; = fn —N; = Ni=% — N;— (8)
ky k.
) D;
D; = Bp —WDi—Nil? 9)
D
Si=Ni—* —s8; (10)
ky
. 1 D
R;= fa <NiP;BR7pa kRS) —rR; (11)
s ky

ﬁm -1 k+k3$ —1 — —+ . . .
Pk = ng+ks and k" = k5. We also take the simplifying

where we have defined g =
assumption that vy = vp = 7y (solving with different degradation rates is straightforward). Addi-
tionally, and based on the simplifying assumption that the promoter of the reporter R is a far from

saturation (i.e., that krg > %Ni%)’ we approximate its expression as

Ri= (N2 ) - (12)
7 R ’YSk‘RS 7 k't TRLY;
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We define the total concentration of Delta in the cell as Dioy = D; + [N;D;]. Using Egs. (2) and

(S1d) and assuming v = vy p, we find that Di follows a simple linear dynamics:

Dtot = Bp — ¥Dsot (13)

This result holds even if the Notch-Delta binding is reversible (kg # 0), provided v = yyp. The
assumption of equal decay rates for both active Delta and the [N;D;] complex is based on the
experimental fact that adding Notch to our Delta-expressing cells does not lead to extra decrease
of Delta levels beyond dilution. The trivial decay dynamics given by Eq. (13) is observed e.g. in
the experiments of Fig. 3C, in which p = 0. Equations (8)—(10) and (12) are the ones used in the

simulations shown in Figs. 3H and Box.

Ultrasensitive response of the mutual inactivation switch Equations (8)-(9) and (12) can

be readily solved in the steady state, leading to the following stationary levels of Notch and Delta:

_ Bn—Bp ke By —Bp ke \? | kevBn
Now = 2g 2 2g 2 ) Ty (14)
Bp
Dst = (15)
7R

where g = v+ D, /k;. This solution is plotted in the Box figure of the main text, for the parameter
values given in the Supplementary Table S3. For Oy > (p the system reaches a steady state of high
Notch and low Delta, in which the cell can send, but not receive, signals. Conversely, when Sp > On
the steady state corresponds to high Delta and low Notch, and the cell can receive, but not send,
signals. In order to quantify how sensitive the cell is in the region around the switch, we define the
sensitivity parameter as the logarithmic derivative of the steady-state signal Sy with respect to a

control parameter [1], which here we take to be the production rate of Delta, Sp:

_ dlog St

§= Tiog Bo

According to Eq. (10), S¢¢ = DpNst/vsks, so that using the result given in (14) at the switch

location (Sp = fn, where the sensitivity is maximal), and in the limit of large cis-inhibition,
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vke < Bn/(v + Dp/kt), the sensitivity of the switch is approximately [2]

N B
&~ ¢ dkey(y + Dy/ky) 16)

For the parameters used in the Box figure, and given in the Supplementary Table S3, the switch is
cleary ultrasensitive, with a sensitivity coefficient £ ~ 22.4. This result does not change qualitatively
when including reversibility in the binding of Notch and cis-Delta, since in the steady state a nonzero

value of k; would simply lead to a renormalization of the cis-inhibition parameter in the steady-state

vk
kg

calculation, equal to k. =
The sensitivity parameter has been defined above in terms of the signal, S;, but the experimen-
tally accesible quantity is the reporter’s promoter activity, R;. The relationship between the reporter

sensitivity and the signal sensitivity is given in a straightforward way by

_dlog Ry dlog Ry dlog Ssy
" dlogfp  dlog Sy dlogfp

R pE,

where we have assumed that the reporter promoter is far from saturation, as in Eq. (12). Thus the
sensitivity measured in our experiments, g, is a combination of the switch sensitivity, £, and the
cooperativity p of the reporter promoter.

Another difference between the steady-state calculation presented above and the experimental
measurements presented in Fig. 3 is the fact that in the experiments Delta production rate, fp, is
zero, and only the decay of an initial concentration of Delta is observed, as expressed by Eq. (13).
Under these conditions, in our experiments we measure the transient sensitivity [1] of the reporter’s
promoter activity as a function of the instantaneous total concentration of Delta, Diot. Extensive
numerical simulations of our model show that both parameters are similar to each other within 20%

in our parameter range.

Alternative model without Delta inactivation by Notch An alternative model that fails
to account for several distinctive features of this system (see text) proposes that the receptor-

ligand interaction is catalytic in Delta (in which case Delta is said to be rapidly recycled). The
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corresponding reactions are the following:

N; + D, = [N,;,D,] — S;+D, trans—activation, with association/dissociation rates k:[i) and
cleavage rate kg

N; + D; = [N;D;] —» D; cis—inhibition, with association/dissociation rates k;éE and inacti-
vation rate kg

S; —=R; Signal activation of reporter

The cis-inhibition reaction now conserves Delta, unlike the mutual-inactivation model. Using
the same assumptions made in the preceding case, we obtain the following ordinary differential

equations:

N,L = BN ")/N,L N’L Dp — Nl& (17)
kt ke
D’L *BD 77Dz (18)
D
Sz = Nvi '-YSSZ (19)
ki
. 1 D
R; = fa <N¢p‘ﬂR7p, kRS) —mR (20)
s kg

which are the basis of the data in Fig. S8.
We note that in this case the steady-state solution of Egs. (17)-(18) leads to the straightforward

relation

VBN

Dy | pp”’
1+’th ke

Nst =

which shows no sensitivity (£ = 1) with respect to the control parameter Sp.

Effect of finite mRINA and signal lifetimes and reporter expression delay In the previous
paragraphs we have assumed that the lifetimes of the signal, S;, and of the reporter mRNA, mg;,
are very small in comparison with those of the proteins. We have also considered that the expression
of the reporter is instantaneously determined by the level of signal. In order to ascertain that these
approximations do not affect the qualitative behavior of our model as described above, we performed

simulations of model (1)-(7), maintaining the assumptions of a fast cleavage of the Notch-Dyjqie
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complex and irreversible binding between Notch and cis-Delta. We also added a finite delay 7 in
the Hill function f4 describing the transcription of the reporter mRNA, Eq. (6), which is now made
to depend on the signal S; at an earlier time 7.

Figure S16 shows the effect of these three factors, namely 7,,, vs, and 7, independently of
each other. As expected, slower decays of the reporter mRNA and signal (plots A and B) lead
to a delay in the turn-on of the reporter. A similar effect is observed in the presence of a time
delay in the expression of the reporter with respect to the signal (plot C). In spite of these time
shifts, the ultrasensitivity of the switch is not substantially affected, with at most a 30% change
in £ for lifetime variations in the 100x range. We also note that in these simulations the reporter
expression is assumed to depend cooperatively on the signal, with a Hill coefficient p = 2 that is on
the order of the experimentally observed value. Other parameters used in Fig. S16 are given in the

Supplementary Table S3.
Two cells with varying Delta expression

In Fig. 4B of the text we show the amplification of Notch signaling in a cell with some 51(31) with a
neighbor identical except for a higher Delta production rate Bg ) such that 61(32 ) P\ e 68 ). The

equations used to generate the figure are:

Y Y N N A
D= —aD =N =Nt Do=f) Dy NP2 - Nopr  (22)
Sy =N 22— 458, Sy = Np 2L — 159 (23)

Fig. 4B displays the numerical steady-state solution of these equations with parameter values as
indicated in the Supplementary Table S3. Note that in Eq. (22) we have assumed that Delta is
degraded due to its trans interaction with Notch. This is not, however, an essential feature of our

model; ultrasensitivity is preserved even when Delta does not degrade in trans.
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Spatially-varying Delta expression

Mutual inactivation model In Figs. 4C,D we consider a field of cells in which Delta production
is given by fp (z) = B%e"x'/ *o as a function of distance x from a central axis, yielding the axially-

symmetric equations:

. ’ D).
Ni:ﬂN—’YNi—Ni&—Ni< J>z (24)
ke kt
. D; D;
Di:ﬂD (I)*’YDifNi77<Nj>i7 (25)
ke kt
. (Dj); 1 (D;),
ks s b ey (26)
Ri = fa(Si; Br.p, krs) — R (27)

The notation (D), refers to the average over Delta levels of all neighbors j of cell i. In particular,
(Dj); = >, M;;D; where M is the connectivity matrix of a two-dimensional hexagonal lattice in

which

1/6 if ¢ and j are neighbors
Mij =

0 otherwise
This assumes that Delta and Notch are uniformly distributed over the boundary of the cell. The
notation (Nj;), is defined similarly. Note that we now assume that the signal decays sufficiently
faster than Notch, Delta and the reporter, which allows us to adiabatically eliminate its dynamics
[Eq. (26)]. Figure S10 indicates the ratiometric character of this model by demonstrating that a

common rescaling of Sy and fp leaves the pattern unchanged.

Band-—pass filter model One could alternatively conceive of a model in which Delta expression
still varies as fOp(z) above, but instead of mutual inactivation there is a process that restricts

expression of the Reporter within a narrow band of Signal values centered about some ky,. This
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band—pass model is governed by the following equations:

N; = Bx —N;

D; = Bp (z) — vD;

. D). 1 D).

Si:Ni< j>l -85S, =0 = 51%7N1< ]>Z
kt s kt
SP K

R, = fr——t—5 — YrA

kP+Squ+Sq

Figure S10 shows that this model is not ratiometric.

Band—pass filter model with Signal activating Notch Adding a proposed mechanism by

which Notch signaling induces Notch expression to the band—pass filter model, we have

STL

N ﬂN+BNk”+S”

—N;

D; = fp (z) — yD;

. D). 1 D).
S'L:Nz< ]>z_785i%0 _— 51%7N1< ]>'L
Ky Vs Ky
SI) kq
=R ap - RA

kp+Squ+Sq

Figure S10 shows that the addition of the Notch induction term does not generate a ratiometric

response.

Band—pass filter model with Signal repressing Delta Another potential feedback which we

can include in the band—pass filter model is one in which Notch signaling represses Delta expression.

In this case the model reads

N; = Bx —7N;
: o (z)
Di = mo Di
1+ (S/kp)™ )
. D). 1 D).
Si:Ni< '7>z—785i%0 = SiziNzK s
Ky Vs ki
Sp kq
ﬁR — A

SP ququ
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Also for this feedback, Fig. S10 shows that the resulting response is not ratiometric.
Lateral inhibition patterning

In order to see the effect of Notch-Delta mutual inactivation on lateral inhibition patterning, let us

first consider the classic lateral inhibition model studied by Collier et al. [3]:

N;+D; = [N;D,] =»S;+N,;,+D; trans—activation, with association/dissociation rates k;,% and
cleavage rate kg
Si > R; Signal activation of reporter/repressor as Hill function

R,— D, Repression of Delta

The trans-activation here does not entail the degradation or inactivation of either Notch or
Delta. The third reaction introduces feedback of incoming signaling on Delta expression. Applied
to a two-dimensional hexagonal lattice of cells (as shown in Fig. 4F), these become the following set

of ordinary differential equations:

N; = Bx — 7N (40)
D; = fr (Ri; Bp, m, kpr) — 7D (41)
. D). 1 D).
Ky s ki
R = fa(Si; Br.p, krs) — m R (43)
The function fg (R;;fBp, m,kpr) is a repressive Hill function of the form ﬂDﬁ. It is now
worth switching to dimensionless units by transforming variables as t = tyg, N = Nﬂo, D= DQO, and
R= £ where Ny = 2% and Dy = 2krs L ¢ gi
= Ton 0= 0= "%, N give
TN; =1-N; (44)
D; =8 ! D; (45)
TU; = D1+R;n i
. N; (D) )P
Bo= gD g (16)

1+ (N; (Dy),)"
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where 7 = %, Bp = g[?w and g = kDBF?"YR-

These equations can, under certain parameter ranges, generate lateral inhibition patterns as was
shown by Collier et al. [3]. Recently, Plahte [4] has shown that the product of cooperativities
pm = n must exceed 1 for a one-dimensional array of cells. Here we show that for a two-dimensional
hexagonal lattice the condition on the product of cooperativities is more stringent, n > 2.

It is immediately clear that a necessary condition for patterning is the instability of the homo-
geneous steady state (N*, D*, R*) in which every cell has the same value of N;, D;, and R;. Thus
a linear stability analysis about the homogeneous steady state can provide necessary conditions for
patterning [4]. The stability analysis requires the computation of the Jacobian at the homogeneous
steady state, which is in this case complicated by the large number of variables (three times the
number of cells). This is made simpler by an observation originally from Othmer and Scriven [5] that
the Jacobian can be expressed as the sum of two tensor products of matrices, one for the internal
dynamics and the other for interactions with neighbors: J = I, ® H + M ® B. The matrix tensor

a1 B -+ a1 B

product is defined as A® B = ( ) Also, here I}, is the k x k identity matrix (k is the

ak.lB ak;cB
94;
aq]'

number of cells involved in the interactions in question), H;; = is the change in production of

species i for a change in species j in the same cell, M is the connectivity matrix as defined above,

and B;; = a??) is the change in production of species ¢ for a change in species j in a neighboring
J
cell. N, D, and R correspond to species ¢ = 1,2, 3 respectively. For the model described above, the

matrices are:

_% 0 0 0 0 0
H= 0 _% —%mgo and B=| ¢ 0 0 (47)
Eopfy 0 -1 0 Fepfo 0O

*\m

where gg = % and fo = W are both < 1. Othmer and Scriven [5] proved that the
eigenvalues of the overall Jacobian are the eigenvalues of the various matrices H + ¢ B where ¢, are

the eigenvalues of the connectivity matrix M. Thus the eigenvalues A of the Jacobian are set by the
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characteristic equation:

-1 0 0

0 -1\ f%mgo =0 (48)

T

Epfo Epfore -1-2A

which aside from A = —% happens to be quadratic in A, meaning that for every g; there are two

eigenvalues of the Jacobian

_441+$)ivky+ﬁzf%@m%h%+i)
- 2

At (49)

For instability we need only that a single A have a real part that is positive, which will be so if
pmgo fogr < —1. An analysis of the matrix M in [5] tells us that ¢ > —0.5, meaning that pmgg fo > 2
and, as go, fo < 1, pm = n > 2 is a lower bound on the overall cooperativity of the system that

must be satisfied for patterning to occur.

cis-Inhibition To incorporate cis-inhibition we add an interaction N; + D; = [N;D;] — @, and
modify the trans-activation to annihilate Notch and Delta. Here it is more convenient to switch into
a different set of dimensionless parameters in which Notch and Delta are normalized by the same
quantity: t = ygrt, N = Nﬂo, D= DQO, and R = R% where Ny = Dy = vk¢, and Ry = kpr. The

equations are then

Tmzm—M—Mwm—m% (50)
Tm:myiw—a—wmm—mg (51)
R; = Br kﬁs(fi(gff):zli));i)p - R; (52)
where 7 = "’TR, BN = %, Bp = 7%30, Br = ,nf‘}{o, Ke = ’Z—i, and krg = %. These were used in

Figs. 4F (right panel) and S17, which demonstrate patterning even with pm =n = 1.
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Chapter 3

Patterning consequences of mutual
cts-inhibition

The first section of this chapter has been published! in identical form, save for differences between
journal and thesis formatting requirements. My contribution was as equal first author. The second
section describes in additional detail properties of a Notch-mediated lateral inhibition mechanism
enabled by mutual cis-inactivation which I conceived while work was ongoing on the contents of
Chapter 1. Although it was posted to the ArXiv? before the preceding section was published, because
we included a basic introduction to the model in the published paper the order in this chapter is
chronologically inverted. The third section, describing results I have obtained by including mutual

cis-inactivation in models of lateral induction, has not been published.

3.1 Mutual Inactivation of Notch Receptors and Ligands Fa-

cilitates Developmental Patterning

Abstract

Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of
neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine
signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction

generates mutually exclusive sending and receiving states in individual cells. It generally remains

1Sprinzak, D., Lakhanpal, A., LeBon, L., Garcia-Ojalvo, J. & Elowitz, M.B. Mutual Inactivation of Notch Receptors
and Ligands Facilitates Developmental Patterning. PLoS Comput Biol 7, ¢1002069 (2011)

2Lakhanpal, A., Sprinzak, D., & Elowitz, M.B. Mutual inactivation of Notch and Delta permits a simple mechanism
for lateral inhibition patterning. arXiv:1005.4301v1 (2010).
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unclear, however, how this mutual inactivation and the resulting switching behavior can impact de-
velopmental patterning circuits. Here we address this question using mathematical modeling in the
context of two canonical pattern formation processes: boundary formation and lateral inhibition.
For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that
mutual inactivation allows sharp boundary formation across a broader range of parameters than
models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness
to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation
speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and ex-
pands the range of parameter values that permit pattern formation, compared to canonical models.
Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which re-
quires only a single downstream regulatory step. Both model systems show how mutual inactivation
can facilitate robust fine-grained patterning processes that would be difficult to implement without
it, by encoding a difference-promoting feedback within the signaling system itself. Together, these

results provide a framework for analysis of more complex Notch-dependent developmental systems.

Introduction

Notch signaling is the canonical metazoan juxtacrine signaling pathway. It is involved in many
developmental processes in which neighboring cells adopt distinct fates. Examples of such processes
include the delineation of sharp boundaries during the formation of Drosophila wing veins [1,2] and
the formation of checkerboardlike patterns of differentiation, as occurs during Drosophila microchaete
bristle patterning [3].

Notch signaling occurs through contact between a Notch receptor on one cell and a Delta/Serrate
/LAG-2 (DSL) ligand such as Delta or Serrate (Jagged in mammalian cells) on a neighboring cell.
This interaction leads to cleavage of Notch, releasing its intracellular domain, which translocates
to the nucleus and serves as a co-transcription factor to activate target genes [4]. In addition
to this activating trans interaction between Notch and DSL on neighboring cells, inhibitory cis

interactions between Notch and DSL in the same cell suppress Notch signaling [5,6,7,8,9,10]. Recent
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work indicates that this cis-interaction between Notch and DSL is symmetric: Notch inhibits its
ligand, and the ligand inhibits Notch [9,11,12]. The molecular mechanism of this mutual inactivation
between Notch and DSL, and whether or not it occurs at the cell surface, is still unclear [9,12,13,14].

In an individual cell, mutual inactivation of Notch and DSL results in an ultrasensitive switch
between ‘sending’ (low Notch/ high DSL) and ‘receiving’ (low DSL/high Notch) cellular states (see
Fig. 1) [11]. A cell with more total Notch than DSL (i.e. with a higher production rate of Notch
than DSL given equal first order degradation rates) has an excess of free Notch but very little free
DSL, making it a receiver (Fig. 1A, left). Conversely, a cell with more total DSL than Notch would
have an excess of DSL and very little Notch, thus becoming a sender (Fig. 1A, right). In either state,
both ligand-mediated inhibition of receptor and receptor-mediated inhibition of ligand contribute to
the nonlinearity of the system. For a sufficiently strong cis interaction, the transition between these
two states becomes very sharp, or ultrasensitive (Fig. 1A). This switch generates strongly-biased
signaling if a sender cell interacts with a receiver cell (Fig. 1B, bottom), but if both interacting cells
are in the same signaling state (Fig. 1B, top and middle panels) much less signal is transduced.

Given that the Notch signaling system is involved in many developmental processes, it is impor-
tant to determine how this cisdependent send/receive signaling switch impacts pattern formation
in developing tissues. A well-studied class of biological patterning systems is local self-activation
with long-range inhibition [15]. Our model of Notch signaling-driven lateral inhibition patterning
may be discussed in similar terms, with the mutual cis inhibition contributing to both the local and
long-range effects. However, in this case the coupling required for “long-range” inhibition occurs via
short-range nonlinear juxtracrine interaction between neighboring cells, instead of via linear diffu-
sion of a signaling molecule across long distances [16]. Moreover, the mutual inactivation of Notch
and DSL discussed above provides an improved source of intra-cellular self-activation [17] leading to
the effects on pattern formation described here.

In order to understand the implications of the Notch-DSL signaling switch for developmental
patterning, we analyzed mathematical models of two canonical developmental patterning processes:

(1) morphogen gradient-driven boundary formation and (2) lateral inhibition. We compared models
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incorporating mutual inactivation in cis to alternative models lacking this interaction. The results
show how mutual inactivation provides several key advantages for patterning circuits: it can al-
low sharp boundary formation without intracellular feedback, maintain it across a broad range of
morphogen gradient slopes, and make patterning insensitive to correlated fluctuations (‘extrinsic
noise’) in Notch and ligand expression. In lateral inhibition circuits, mutual inactivation speeds up
patterning and relaxes parametric requirements on the regulatory interactions. Finally, it permits
a surprisingly simple, and counter-intuitive, lateral inhibition circuit architecture, in which Notch
activates its own expression, and no additional feedback or involvement of other components is

required.

Results
Mutual inactivation, even in the absence of intracellular feedback, generates sharp
boundaries
Wing vein formation in the developing fly is a classic model system for studying the generation of
sharp boundaries. In the Drosophila wing, there are four longitudinal veins that include several rows
of cells that are more compact and have darker pigmentation than intervein cells. The position of
the wing veins in the wing imaginal disk is initiated by EGF signaling during the early stages of
larva development [18]. The final form (position and width) of the wing veins is refined by several
subsequent processes. Notch signaling has been shown to specifically control the sharpening of the
boundary between pro-vein (the region competent to produce vein fates) and intervein regions in
the wing disc [1,2]. In this system, the Delta production rate is controlled by a gradient of veinless
expression diminishing outward from the center of the pro-vein region (Fig. 2A, left). Notch signaling
is observed in two sharply defined side-bands, which restrict further vein development to the region
between them (Fig. 2A, right).

We analyzed two simplified models of boundary formation, with or without mutual inactivation
(Figs. 2BC, Equs. 1-6, and Supporting Information Text S1.2). In both models, we assume constant
Notch production (at a rate denoted Sy) throughout the field of cells (blue line in Fig. 2D, top).

We also assume that a linear gradient from the center of the vein, x = 0, controls the rate of ligand
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production, denoted Sp(z) (red lines in Fig. 2D, top). Alternative models with other gradient
shapes lead to the same results shown below.

In the mutual inactivation (MI) model (Fig. 2C), mutually exclusive signaling states generate
sharp side-bands (as observed experimentally) where ‘sender’ cells contact ‘receiver’ cells near the
crossing of the Notch and DSL production rate profiles. This model does not consider any feedback
of Notch signaling on either DSL or Notch itself in the same cell, and thus lateral inhibition does
not arise in this case (in contrast with the lateral inhibition models below).

Alternatively, in the ‘bandpass’ (BP) model a similar Notch activity profile can be generated
in the absence of mutual inactivation, but this requires a bandpass filter of Notch activity level
which we represent phenomenologically as the product of increasing and decreasing Hill functions
(Figs. 2B, S1A). Such a bandpass filter represents the effective action of diverse regulatory processes
downstream of Notch signaling, which could exist in different signaling architecture alternatives to
the MI mechanism. We note here that while transcriptional feedbacks on Notch and DSL have been
described in vein formation [1,2], we do not explicitly consider them in these models in order to focus
on the main effects of the mutual inactivation process. Our qualitative conclusions are insensitive to
their inclusion. The equations representing these models are derived in the Supporting Information

Text S1.2 and summarized in Eqns. 1-6.
Mutual inactivation makes boundary sharpness insensitive to morphogen gradient slope

The slope of the morphogen gradient is expected to vary in natural systems from fluctuations and/or
genetic variability, and thus may be an important factor in determining boundary features. To
investigate the effect of such variability on boundary formation, we systematically analyzed the
responses of the two models to different morphogen gradient slopes. For both models, we maintained
the position of the threshold at a constant distance from the center of the vein (Fig. 2D, top).

In the MI model, the width of the signaling bands remained nearly constant across a wide range
of morphogen gradient slopes (Fig. 2D, middle). This resulted from the sharp switch from a sending
to a receiving state at the Sy = Bp(x) intersection. In contrast, the amplitude of the signaling bands

changed systematically with the magnitude of the slope. This can be understood by considering how
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much free Notch and free DSL is available at the sender-receiver interface. The concentration of
free DSL or Notch in the sending or receiving cell, respectively, is approximately proportional to
the difference in Notch and DSL production rates, which in turn is proportional to the slope of the
gradient.

In contrast, the BP model shows substantial broadening of the bands at lower values of the
gradient slope (Fig. 2D, bottom). Unlike in the MI model, here Notch signaling occurs throughout
the field of cells and is simply filtered by the downstream bandpass. As a result, the width of the
Notch signaling bands is approximately proportional to the width of the bandpass divided by the
slope of the Notch signaling profile (Fig. S1B).

The key parameters controlling the reporter expression profiles are the strength of the cis-
interaction, k. ! for the MI model (decreasing k. leads to increasing cis-interaction strength), and
cooperativity, p for the BP model. Interestingly, the BP model supports a sharp boundary only for
sufficiently large p and sufficiently high slopes (Fig. 2E, bottom). In contrast, with the MI model,
band sharpness is preserved across a broad range of k. values and morphogen slopes (Fig. 2E, top).

Thus, mutual inactivation enables a more robust patterning mechanism.
Wing vein mutant behavior is explained by the MI model

A striking aspect of the Drosophila wing vein system is observed in the heterozygous mutants of
Notch and Delta (e.g. single copies of the Notch and Delta genes). While heterozygous mutants
of Notch (Notch®/~) or Delta (Delta®/~) alone exhibit mutant phenotypes (causing thicker veins),
the Notcht/~ Deltat/~ double mutant restores the wild-type phenotype [19,20,21]. More generally,
several mutant phenotypes seem to depend on the ratio between the copy numbers of the Notch
and DSL genes [19]. This ratiometric dependence of the vein width cannot be derived from the
several known feedbacks operating in the Drosophila wing vein, but emerges automatically from the
MI model. This is because the position of the Notch signaling band occurs where Notch and DSL
production rates are equal. This position remains unchanged when both rates are multiplied by the
same factor. By the same reasoning, the vein width (distance between side bands) increases with

increasing ratios between the effective copy numbers of DSL and Notch, as shown in Figs. 3A, S2.
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Interestingly, however, this picture breaks down when the maximum DSL production rate,
wax = Bp(z = 0), becomes smaller than the Notch production rate, f75%* < Sn. What phenotype

would we expect in this case? Here, since all cells are essentially ‘receivers’ we expect negligible levels
of Notch signaling, leading to a phenotype of an unsharpened, diffusely-defined vein, that defaults
to the pre-patterned vein-competent region. Indeed, the Delta™ ~ phenotype exhibits broad veins
with diffuse boundaries, similar to Delta null mutant clones [19]. This result makes a quantitative
prediction: the maximal DSL (Delta ligand in the case of the wing vein) production rate should be
less than twice the constitutive Notch production rate in this system.
Mutual inactivation-based boundary formation is sensitive to intrinsic noise but robust
to extrinsic noise
In the fly larva, the width of the vein remains quite constant over length-scales of many cells.
This occurs despite the possibility of substantial fluctuations, or ‘noise’, in the expression of Notch,
Delta, and other components [22]. In order to understand how gene expression noise affects the
MI wing vein model, we considered the response of the system between two limiting cases [23]. At
one extreme, noise can be completely ‘intrinsic’, meaning that Notch and DSL production rates
fluctuate in an uncorrelated manner. At the opposite extreme, ‘extrinsic’ noise could dominate,
generating correlated fluctuations in Notch and DSL production. As shown in Fig. 3B, intrinsic
noise causes the width of the vein to become irregular (Fig. 3B, bottom), while extrinsic noise of
the same magnitude has significantly less effect on width (Fig. 3B, top). To show the generality of
this effect, we performed simulations of boundary formation patterning for a range of different noise
amplitudes and correlations (Fig. 3C). These simulations show that the standard deviation of peak
position (which is a measure of pattern robustness) decreases as the noise becomes more extrinsic.

This behavior emerges from the ratiometric sensitivity of the MI model to the levels of Notch and
DSL. In the MI model, the signaling state of a cell (sending or receiving) is determined by the ratio
of Notch to DSL — in ‘sender’ cells this ratio is smaller than one, and in ‘receivers’ it is greater than
one. As the vein edge is defined by Notch signaling, it is restricted to the area where sender cells are

in direct contact with receiver cells, at which Notch and DSL production rates are comparable (Fig.
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2D). Extrinsic noise tends to maintain constant relative expression of Notch and DSL. Therefore, it
does not disturb the segregation of cells into senders and receivers, and preserves the band of Notch
signaling activity. This effect is maintained across a broad range of noise amplitudes and correlation

levels.
Mutual inactivation speeds lateral inhibition patterning

Lateral inhibition models have been used to describe the formation of checkerboard-like patterns in
which high DSL cells are surrounded by low DSL neighbors. This type of structure occurs in bristle
patterning in Drosophila [3] and hair cell patterning in the vertebrate inner ear [24]. Standard lateral
inhibition (LI) models assume that neighboring cells inhibit each other’s differentiation through
Notch signaling, which indirectly downregulates DSL expression to form an intercellular positive
feedback loop (Fig. 4A, Supporting Information Text S1.3). Under the right conditions, this feedback
loop can amplify small initial differences between cells and generate patterns in which neighboring
cells exhibit alternating expression levels. A lateral inhibition model of this type was analyzed
previously [16,25].

How does mutual inactivation affect the lateral inhibition patterning process? To address this
question we systematically compared the standard LI model (Fig. 4A) to a lateral inhibition with
mutual inactivation (LIMI) model (Fig. 4B, equations are summarized in Eqns. 10-12, and derived
in Supporting Information Text S1.3). Because the MI interaction constitutes an additional, rapid
intracellular feedback, we intuitively expected an effect on both the patterning speed and accessibil-
ity. To test this hypothesis, we performed dynamical simulations to determine patterning speed, and
linear stability analysis about the system’s homogeneous steady state (HSS) to determine pattern
accessibility. The HSS is defined as the steady state in which all cells have identical concentrations
of signaling system components [16,26].

Using dynamical simulations, we first compared how rapidly the LI and LIMI models are able
to reach the patterned state from an initially non-patterned state. Fig. 4CDE shows the dynamics
of DSL concentration in single cells for both models with one set of parameters (black dot in Fig.

5). The LI model initially spends a considerable time in a nearly homogeneous state (left of the
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dashed line in Fig. 4D) before DSL concentrations diverge (red and blue curves, right of the dashed
line). In contrast, in the LIMI model, DSL concentrations diverge much earlier (Fig. 4E). The LIMI
process approaches the final patterned state more rapidly than the LI process, largely due to the
difference in the rate of deviation from homogeneity. A similar difference in the patterning speed is
observed over a large region in parameter space as shown in Fig. S3CDEF.

Why are the dynamics accelerated in the LIMI model? A key difference in the LIMI model is
the inactivation terms, which are equivalent to effective degradation terms (e.g. k%NiDi). Because
protein degradation is assumed to be the slowest timescale in the system, increasing the degradation
rate speeds up the overall response time. In principle such acceleration could be achieved in the
LI model as well, just by increasing the magnitude of the constitutive degradation terms. Note,
however, that in the LIMI model the additional degradation only occurs when both Notch and
DSL are simultaneously present on the same cell. This causes an acceleration specifically during
patterning, while avoiding unnecessary protein turnover that would result from increased constitutive

degradation.
Mutual inactivation allows lateral inhibition without cooperative interactions

The potential for lateral inhibition pattern formation in a given system is strongly controlled by its
dynamical behavior near the HSS. For some parameter sets, the HSS is stable and no patterning
occurs. For other parameter sets, the HSS is unstable. In this case, although components’ concentra-
tions may initially approach their HSS values, in the presence of even arbitrarily small heterogeneous
fluctuations they must subsequently diverge, generating the patterned state (Fig. 4C).

We next set out to systematically compare the patterning ability of the LI and LIMI models. We
performed linear stability analysis of the HSS [16,26] across a broad range of parameter values, and
determined the subset of parameter sets for which the system’s HSS is unstable to perturbations
(Fig. 5A-D). Formally, this is done by calculating the maximal escape rate from the nonpatterned
HSS (Supplementary Information S4). If this rate, termed the Maximal Lyapunov Exponent (MLE),
is positive, the HSS becomes unstable and patterning occurs.

In Fig. 5A-D we plot the MLE as a function of the production rates Sy and Sp for two
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different effective cooperativities, for both the LI and LIMI models. At high cooperativity (n = 3),
both models show a large region of parameter space in which the system patterns (M LE > 0) (Fig.
5AB), although quantitatively the LIMI MLE is generally greater than the LI MLE. In contrast, when
n = 1, only the LIMI model supports patterning anywhere in the parameter space (Fig. 5CD). Thus,
the mutual inactivation model circumvents the requirement for cooperative regulatory feedback in
the standard lateral inhibition model. The qualitative behavior of Fig. 5A-D is maintained as long
as the cis interaction is strong enough (k. < 1).

Mutual inactivation permits lateral inhibition patterning with only a single level of
transcriptional feedback

Mutual inactivation can have a more dramatic effect on patterning: Besides improving the perfor-
mance of standard patterning circuits, it can enable an altogether different, and simpler, lateral
inhibition circuit architecture. The essential requirement for lateral inhibition is that increased
Notch activity in one cell reduces its ability to signal to its neighbors. In the presence of mutual
inactivation, one way to achieve this is for Notch activity to directly up-regulate Notch expression
(Fig. 6A). Increased levels of Notch result in more rapid removal of DSL through the mutual in-
activation interaction, effectively downregulating it. Thus, a circuit in which Notch activates its
own expression implements lateral inhibition with only a single level of transcriptional feedback, i.e.
instead of Notch activating a repressor of DSL, there is direct downregulation of DSL through the
mutual inactivation interaction. This type of autoregulation has been observed in some cases, such
as the C. elegans AC/VU fate determination system [27]. We term this circuit architecture ’Simplest
Lateral Inhibition with Mutual Inactivation’ (SLIMI). Linear stability analysis of this SLIMI circuit
(Fig. 6B) shows that patterning can occur across a broad range of parameter values. Moreover, as
with the LIMI model, SLIMI does not require explicit cooperativity for patterning. Thus, lateral

inhibition can be achieved with a startlingly simple circuit architecture.
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Discussion

Even as the molecular components of patterning circuits become increasingly known, the ways in
which these components interact dynamically to generate patterns often remains unclear. We and
others recently reported evidence for a strong mutual inactivation interaction that occurs between
Notch and DSL in the same cell [11,12]. Mutual inactivation between Notch and DSL is a relatively
simple biochemical mechanism that generates an ultrasensitive, cell-autonomous, switch between
“sending” and “receiving” states (Fig. 1). Other mechanisms such as cooperative binding of tran-
scription factors and regulatory feedbacks can also generate switch-like responses, but they require
a more complex regulatory setup (e.g. multiple binding sites, DNA looping, or more elaborate gene
circuits) and are rarely observed to have effective cooperativity higher than 3 or 4 [28,29,30,31]. More
generally, sequestration interactions are emerging as a widespread mechanism for sharp switching in
diverse biological systems [32,33,34,35,36,37,38].

These and other experimental observations necessitate a revised analysis of patterning circuit
mechanisms [10,11,12]. As an initial step, we have used mathematical modeling to analyze two canon-
ical Notch-dependent patterning processes: the formation of sharp boundaries in the Drosophila wing
vein [1,2] and the formation of alternating patterns of differentiation, such as that found in Drosophila
SOP patterning [3,39]. The results described here show that mutual inactivation facilitates these

patterning processes, and permits simpler regulatory architectures.

Boundary Formation

In the wing vein boundary, graded expression of Delta is converted to two sharply defined ‘side
bands’ of Notch activity [1,2]. The mutual inactivation mechanism achieves this conversion without
requiring additional circuit components. Furthermore, unlike a broad class of alternative models
based on transcriptional cooperativity (e.g. the BP model), the MI model can generate sharp
boundaries over a wide range of gradient profiles and biochemical parameters (Fig. 2DE). The MI
model has a unique property that can experimentally distinguish it from other models: The pattern of

expression of Notch target genes depends on the relative expression levels of Notch and DSL rather
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than on their absolute concentrations (Figs. 3A, S2). This property can explain the ratiometric
behavior observed in Notch and Delta heterozygous mutants [19,20] (Fig. S2). Interestingly, when
DSL expression in our model is reduced below Notch expression level everywhere, very little signaling
occurs (below the blue line in Fig. 3A). In this condition Notch signaling is no longer expected to
restrict vein width, resulting in a broader vein with diffuse boundaries [2]. This leads to the following
experimental prediction: by reducing Delta production continuously, the width of the veins should
first decrease as the crossing points between Notch and Delta production rates move toward the
center of the vein. However, this thinning should be followed by an abrupt switch to the unrestricted
(wider) vein regime once f5** < By (Fig. 3A).

The same ratiometric behavior also underlies the dependence of the pattern on noise (Fig. 3BC):
while the width of the boundary is sensitive to intrinsic noise (uncorrelated between Notch and DSL)
it is robust to extrinsic noise (correlated between Notch and DSL). Experimental measurements of
the correlations between Notch and Delta expression in wing discs (or other systems) would help to
determine which noise regime is most relevant in wvivo.

We note that transcriptional feedback of Notch signaling on Notch and Delta expression has been
shown to occur in the Drosophila wing vein boundary [1,2]. Here we have omitted these feedbacks
in order to focus specifically on the effects of mutual inactivation. However, it is important to note
that these feedbacks are not sufficient to explain the experimentally observed ratiometric behavior
(Fig. S10 in ref [11]). Experimental disruption of these feedbacks could help to determine what
role they play in patterning, e.g. whether they function to control the pattern itself, to increase its

amplitude, or to provide some other functionality in normal development.
Lateral Inhibition

Mutual inactivation facilitates lateral inhibition patterning in several ways. First, mutual inacti-
vation accelerates patterning dynamics compared to an equivalent model without it (Fig. 4DE).
The LIMI model accelerates dynamics by increasing protein turnover, but does so selectively only
when both proteins are present on the same cell. Thus, once patterning is complete, there is no

additional protein turnover cost. Notch has been shown to exhibit relatively fast response times
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in some systems, and the lifetime of the cleaved intracellular domain of Notch is short and highly
regulated [40], suggesting that the acceleration provided by mutual inactivation could be important
in development. Furthermore, recent work has attributed minimization of errors in patterns of the
sensory organ precursors to faster dynamics due to cis-inhibition [21].

A second advantage is that mutual inactivation removes the requirement that would otherwise
exist for an explicitly cooperative step in the lateral inhibition feedback loop (Fig. 5). This re-
quirement on the LI model was previously proven analytically both for a 1D chain [16] and a 2D
[11] hexagonal lattice. In fact, mutual inactivation plays a dual role here: in addition to providing
the non-linearity required for the amplification of small differences between neighboring cells, it also
introduces an additional intracellular feedback reinforcing the intercellular feedback loop. When
Notch signaling down-regulates DSL, this also reduces the rate of Notch inactivation, effectively
freeing additional Notch receptors and leading to an additional increase in Notch signaling.

Finally, mutual inactivation allows a new, alternative circuit architecture for lateral inhibition:
Instead of transcriptionally down-regulating DSL, Notch can up-regulate its own expression (Fig.
6A). This architecture is sufficient for lateral inhibition patterning across a broad range of parameters
(Fig. 6B). This alternative architecture is intriguing because in some natural lateral inhibition
circuits the regulatory pathway for Notchdependent down-regulation of DSL remains unclear [41,42]
(we note that in other systems downregulation of DSL by Notch has been observed). At the same
time, Notch up-regulation by Notch signaling has been shown in several lateral inhibition patterning
examples, such as the AC/VU system in C. elegans [27]. This mechanism may provide the main
feedback in lateral inhibition circuits, or may work in combination with the classical lateral inhibition
feedback mechanisms on DSL (LIMI model). It will be interesting to determine to what extent this
mechanism participates in various lateral inhibition systems.

In general, mutual inactivation of Notch and DSL in cis may be conceived as a direct, rapid, and
sharp replacement for an additional level of intracellular feedback that would otherwise have been
required to drive neighboring cells to distinct fates in a finegrained spatial pattern. In this sense

we may say that an intrinsic difference-promoting logic is encoded in the signaling system itself by
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the mutual inactivation phenomenon. Because of this, regulatory circuit architecture that achieves
fine-grained patterns without MI can be made less complicated (i.e. with fewer regulatory levels)
by including MI. Both examples analyzed here demonstrate this feature.

Together the results above provide a theoretical framework as well as testable hypotheses for the
role of mutual inactivation between Notch and DSL in the generation of fine-grained developmental
patterns. In the future, this analysis can be expanded to include additional circuit details such as
further regulatory feedbacks, multiple Notch ligands and receptors, and modifiers of Notch signaling,

and extended to additional Notchdependent patterning systems.

Materials and Methods

In summary, our model consists of three protein components - Notch (V), DSL (D), and a Reporter
(R) - with two basic interactions: between Notch and DSL on different cells (in trans) to stimulate
reporter production in the Notch-bearing cell, and between Notch and DSL on the same cell (in cis)
to unproductively inactivate both molecules. These interactions are parametrized by the following
quantities:

BN, Bp, Br: production rates of Notch, DSL, and Reporter target gene, respectively.

k7Y Ky L. the strengths of the cis- and trans-interactions, respectively.

~: degradation rate of Notch and DSL, assumed to be equal for simplicity (no loss of generality
for the steady state solutions, see Supplementary).

vr: degradation rate of R.

krs,n: affinity and Hill coefficient, respectively, of Reporter induction by Notch signaling.

(Dj),: average concentration of DSL in all cells, indexed by j, that are neighboring cell i.
Similarly, (N;), denotes the average concentration of Notch in all neighbors of the ith cell.

The description of the model in this section omits the dynamics of the cis and trans intermediate
complexes, the Notch intracellular signaling domain, and the mRNAs corresponding to each protein.
Formally, this is exact in the limit where these components’ dynamics are rapid relative to that of

the proteins. The former two of these conditions is reasonably expected to be valid. The Supporting
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Information presents the model in full detail, and contains a demonstration that including finite
mRNA lifetimes does not modify our conclusions (Fig. S4). We also note that the model considered
here is insensitive to the exact mechanism for cis-inhibition and whether the cis interaction occurs

at the surface or not.

MI model of boundary formation

O = byt - mo Dok D, )
D = bo(e) -, - 2k NeD: @)
&M by o
Bandpass (BP) model for boundary formation
dgi =pN —YN; — e D0 <]fj>i (4)
o = Bo(e) ~ 7Dy~ = g”i (5)
: N; (D))
dg = Br k%5(+ (<ZViJ<>;))j>i)p T (]\1[1 D) — YRR (6)

Compared to the MI model, these equations remove the cis-inhibition terms from the rates of change
in Notch and DSL, and the production rate of the reporter R is now the product of two Hill functions,

one decreasing and one increasing, with affinity krg and cooperativity p.

Lateral Inhibition (LI)

dN; Ni (Dj)

=By — yN; — 2 7
7 =N T (7)
dD; 1 D; (N;),
i TR P TR (®)
dR; N; (D))"

=Br (N: (D;),) = — YRR 9)
dt krs + (N: (D;),)

The parameters are defined consistently with the above. In these equations there is no cis-inhibition.

The lateral inhibition is implemented by decreasing the production rate of DSL as a function of
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signaling Reporter levels, by the ﬁ factor.

Lateral Inhibition with Mutual Inactivation (LIMI)

dN; Ni (D)), NiD

= By — YN, — i 1
7 By = » " (10)
dD; 1 D; <Nj>‘ N;D;

- D — i 11
i rirRe Y e Fe (1D
dR; N; (D;),)"

= fBr (N: (D;);) 7w — YRR (12)
dt ks + (Ni (D;);)

These differ from the LI model only by the inclusion of an additional cis-inhibition degradation term

(N;C—f)l) to the dynamics of both Notch and DSL.

Simplest Lateral Inhibition by Mutual Inactivation (SLIMI)

dAN; (N; (D;))" N, (D;), N:Di

= + o Ni — L 13
a N BNIch—k(NZ- (o7 ks ko (13)
dD; Di(N;).  N,D
Y B —~D; — i 14
a P = e (14)

Numerical computations

Dynamical simulations were performed using Matlab’s odel5s solver (ver. 7.6.0, The Mathworks).
Figs. 2DE were generated by solving Eqgs. 1-3 for the MI model and Eqns. 4-6 in the BP model.
Simulations were performed on a 12x48 hexagonal cell array assuming periodic boundary conditions.
The DSL production profiles used were Sp = Bymax (B |z| + 1 —10.5,0) for the MI model and
Bp(x) = fymax (B|z| 4+ 0.5 — 10.5,0) for the BP model, where B are the indicated slopes. Fig. 3A
was generated using Eqns. 1-3 with DSL production rate profiles given by Sp(z) = Bn (1 - % |az:|>7
where f = 5**/0y is as indicated in the figure. Figs. 3BC were generated using Eqns. 1-3 with
multiplicative (static) noise terms for fp and Sy. Generation of noise is described in Supporting
Information Text S1.5. Figs. 4CDE were generated by solving Eqns. 7-12. These simulations were
performed on a 12x12 hexagonal cell array assuming periodic boundary conditions. The MLE values
in Fig. 5A-D were calculated by performing linear stability analysis on Eqns. 7-12 using previously

described techniques ([16], Supporting Information Text S1.4). Parameters used throughout the



analysis are provided in Table S1.
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Figure 1: Ultrasensitivity due to mutual inactivation of Notch and DSL. (A) Plot of free DSL (red)
and free Notch (blue) as a function of DSL production rate, 8p. A sharp switch (high logarithmic
derivative) between sender and receiver states occurs when Sp = fy. (B) Schematic illustration of
sending and receiving states, showing that while very little signaling occurs when two neighboring
cells are both senders (top) or both receivers (middle), strongly biased signaling can occur for the
case of neighboring sender and receiver cells (bottom).
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Figure 2: Mutual inactivation facilitates wing vein boundary formation. (A) Schematic of vein
boundary formation. During vein formation a gradient in DSL production from the center of the
vein (left, red) is converted into two sharply defined sidebands of Notch target expression (right,
green). (B) Cartoon of the Bandpass regulatory mechanism, in which the boundary is determined
by a transcription-level filter which determines the mapping from Notch activity to cell fate. Note
that there is no feedback on the signaling system. (C) Cartoon of the Mutual Inactivation model
regulatory mechanism, in which the level of Notch signaling directly determines the cell fate. Note
again that there is no feedback on the signaling system. (D) Simulations of boundary formation.
Top: DSL gradient profiles (three red curves) with varying slopes, chosen to generate side bands
at a fixed position. Middle, bottom: Profiles of target reporter concentrations for the three slopes
shown in the top panel for the MI model (middle) and the BP model (bottom). (E) Dependence
of peak width on slope for the two models. In the MI model (top panel), peak width, w, remains
small over a range of gradient slopes and strengths of the mutual inactivation interaction, k.. Here,
smaller k. corresponds to stronger cis-inhibition (See Eqns. 12). In the BP model (bottom panel)
peak width depends on the gradient slope as well as on the bandpass steepness parameter, p. Here,
higher p corresponds to a steeper bandpass (see Eqn. 6 and Fig. S1). Note that for the BP model,
DSL production profiles were shifted to lower levels (see Table S1) but maintained the same slopes
compared to the profiles shown in (B, top). This made sure that the bandpass is in a functional
regime in which Notch signaling varies linearly with position (e.g. as in Fig. S1B). See Table S1 for
parameter values.
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Figure 3: Boundary width is robust to correlated noise in Notch and Delta. (A) Notch reporter
profiles (green heat map, bottom panel) for varying maximal production rates of DSL, 852* (red
curves in top panel) and a fixed production rate of Notch, Sy (blueline). Spatially-uniform reduction
in B2 levels (y-axis, lower panel) results in restriction of the vein to a progressively narrower region
(lower panel). However, when the DSL production rate is lowered to the extreme when Sp < Oy
everywhere, all cells are in receiver states, and vein boundaries are no longer restricted by Notch
signaling (see discussion in text). This is the expected behavior in the Delta®/~ heterozygous mutant
when the DSL production rate is half that of the wild-type (arrows), if in the wild type f5** < On.
(B) The Notch reporter profile is sensitive to intrinsic (uncorrelated) noise but robust to extrinsic
(correlated) noise in Notch and DSL production rates. Simulations of boundary formation with
static multiplicative production rate noise of similar magnitude but different degrees of correlation
(blue scatter plots) show that the pattern is less sensitive to extrinsic noise (top) than intrinsic
noise (bottom). (C) The effect of noise amplitude and degree of correlation on Notch reporter peak
positions. Standard deviation in peak position (color bar) at each row (red dots in B) is calculated
from 300 simulations of 8x24 cell arrays (such as those in B) for different noise attributes. The noise
parameters used in B are marked (white circles). See Supporting Information Text S1.5 and Table
S1 for parameter values and description of noise generation.
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Figure 4: Mutual inactivation facilitates lateral inhibition patterning with faster dynamics. Com-
parison between (A) standard lateral inhibition model (LI) and (B) lateral inhibition with mutual
inactivation (LIMI). (C) A typical simulation of lateral inhibition dynamics showing pattern gen-
eration from an initially homogenous steady state (HSS). (DE) Simulations reveal that the LIMI
model (E) patterns faster than the LI model (D). Red and blue curves show the dynamics of DSL
levels in cells with high and low final DSL levels, respectively. Vertical dashed lines indicate the
homogeneous time defined as the time it takes the coefficient of variation to increase above 50% of
its final value (see Fig. S3). These simulations were performed with the parameters indicated by
the black dots in Fig. 5AB. Similar behavior is observed over most of the parameter space (see Fig.

S3).
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Figure 5: Mutual inactivation circumvents requirement for cooperative feedback. Escape rates from
the HSS (indicated by Maximum Lyapunov Exponents, or MLE) as a function of Sp and Sy. MLE
values were calculated using linear stability analysis (Supporting Information Text S1.4) for the LI
(A,C) and LIMI (B,D) models. Positive MLE values (white/pink regions) support patterning, while
negative MLE values (blue regions) do not. The dependence on feedback loop cooperativity (inset)
can be seen by comparing (A,B) to (C,D). Black dots in A and B correspond to the parameters used
to simulate Fig. 4DE.
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Figure 6: Simplified lateral inhibition with mutual inactivation (SLIMI). (A) Schematic of a simpli-
fied lateral inhibition circuit architecture. Here, Notch signaling activates expression of the Notch
gene. Notch activation thus leads to higher Notch levels which, in turn, lead to lower levels of free
DSL due to the mutual inactivation interaction between Notch and DSL proteins in cis (dashed ar-
rows). (B) Calculation of the MLE for the SLIMI model. The SLIMI model can support patterning
without cooperative feedback over a large region of parameter space. Color scale is the same as in
Fig. 5AD. Equations and parameters are described in the Supporting Information Text S1.3 and
Table S1, respectively.
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Figure S1: Properties of the bandpass function in the BP model. (A) Bandpass profiles for dif-
ferent cooperativities p Reporter production rate is proportional to a bandpass function given by
Br (NVi(Di),)" 1
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Si = N; (Dj),, is the concentration of cleaved Notch intracellular domain. Increased p corresponds
to narrower bandpass function. (B) Width of reporter peaks in the BP model (Fig. 2D, bottom
panel) is proportional to width of bandpass function and inversely proportional to slope of gradient.
A schematic showing the widths of the reporter peaks (wy,ws) for a given bandpass width (on y-axis)
and two gradient profiles (slope 1, slope 2).

(first term in the right hand side of Eqn. 6). Here, the input,
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Figure S2: Ratiometric dependence of vein width on Notch and DSL production. The distance
between the two reporter peaks for the MI model (shown in Figs. 2D, 3A) as a function of the
production rates Sy and B5**. Vein width is maintained when the ratio between production rates is
the same. This ratiometric dependence explains why the double heterozygous mutant (N*/~D*/-)
exhibits similar veins to the wildtype (wt) while the single heterozygous mutants show mutant
phenotypes (four white circles). Here, the DT/~ mutant falls in the receiving only regime (below the
blue line in Fig. 3A) where very little Notch signaling is produced across the field of cells. In this
case, the vein is not restricted by Notch signaling leading to a broad vein with diffused boundaries.
Parameters for the presented simulations are given in Table S1.
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Figure S3: Faster patterning dynamics in the LIMI model. (A,B) Determination of homogeneous
time and total time for patterning. Time course of the coefficient of variation (CV) of DSL concentra-
tion (black solid line) is plotted for the data shown in Fig. 4DE (faded red and blue) corresponding
to the LI (S3A and 4D) and LIMI (S3B and 4E) models. Homogeneous time, Thomogeneous, (dashed
line) is defined as the time at which the CV is 50% of its final value. The total time, T¢otq;, (dotted
line) is calculated as the time it takes for the median high-DSL cell (faded red) to reach 95% of its
final value. (C,D) Overall speed of patterning (defined as 1/7¢otq;) in the LI model (C) is lower than
in the LIMI (D) model over a large range of parameters. (E,F) An even larger difference is observed
for the homogeneous speed of patterning (defined as 1/Thomogencous) between the LI (E) and LIMI
(F) models. This shows that onset of heterogeneity occurs much faster in the LIMI model and that
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this difference has a major contribution to the overall faster patterning dynamics.
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Figure S4: Effect of finite mRNA lifetimes. (A,B,C,D) The explicit inclusion of finite mRNA lifetimes
in our MLE calculation does not affect the sign of the MLE, and correspondingly does not change our
conclusion regarding the ability of the system to pattern. This is illustrated here for the (A,C) LI and
(B,D) LIMI models with n — 3, with (C,D) MLE plots for mRNA dynamics comparable to the first-
order protein degradation rate and (A,B) extremely fast mRNA dynamics. (E,F) We also repeated
our patterning speed analysis with slow mRNA dynamics and find that our qualitative conclusion
that the LIMI model (F) accelerates patterning by more rapidly departing from the homogeneous
state than the LI model (E) to be unchanged from the fast mRNA case, with only a quantitative
change in the overall patterning time. As in Fig. 4DE, the traces of DSL concentrations over time
are colored according to the eventual fate of the cell (red for high Delta, blue for low Delta). As in
Fig. 3AB, the dashed black line demarcates the homogeneous and heterogeneous phases.
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Table S1: Parameter values

Figure Equations | Parameters Initial conditions and com-
ments

1A S1.2a,b y=01,v=1,k. =1,k =10,
Bn = 20, Bp = 0.02-2000

9D, mid- | 1-3 Ny =01,k =1, k. = 0.1, ky = 5,

dle krs = 1500, By = 100, Bp = see
function F2Dm(x), fr = 75, n =1

2D, lower | 4-6 v = 0.1, yg = 1, k. = 10000, k; =
5, krs = 1500, By = 100, Bp = see
function F2DI(x), Br = 75, p = 5

2E, upper | 1-3 v = 0.1, vg = 1, k. = as indicated,
ki = 5, krs = 1500, Bn = 100, Bp
= see function F2Eu(x), Bgr = 75, n
=1

9E, lower | 4-6 v = 0.1, vg = 1, k. = 10000, k, =
5, krs = 1500, B = 100, Bp = see
function F2El(x), fgr = 75, p = as
indicated

3A 1-3 v =01,vz =1, k. = 0.1, k; = 5,
krs = 1500, By = 100, Bp = see
function F3A(x), fr = 75, n =1

3BC 1-3, S5 v=01 v =1, ke =01, k, =5,

By = 100, p = 160 to 40

continued on next page. . .
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— continued
Figure Equations | Parameters Initial conditions and com-
ments
4D S3.4 y=1,v=1,vr =1,k =1, kpr | Cells initially set in a low
=1, krs = 67, By = 0.1 to 1e5, Bp | Delta/high Notch condition with
= 0.1 to 1leb, Br = 1000000, m = 1, | random perturbations from D =
n=3 Bp -107° and N = By chosen
uniformly from +10%.
4E S3.1 vy=1, v =1 vg =1, k. = 0.1, | Cells initially set in a low
ki =1, kpr = 1, krs = 67, By = | Delta/high Notch condition with
0.1 to 1eb, Bp = 0.1 to 1leb, g = | random perturbations from D =
1000000, m =1, n =3 Bp - 1075 and N = By chosen
uniformly from +10%.
5AC S3.4 v=1,vs =1, v =1, k. = 10000,
ke =1, kpr = 1, krs = 67, fn =
0.1 to 1e5, Bp = 0.1 to 1leb, Br =
1000000, m =1, n =3 (A) or 1 (C)
5BD S3.1 vy=1,v =1,y =1, k. = 0.1,
ki =1, kpr =1, krs = 67, fy =
0.1 to 1eb, Bp = 0.1 to leb, fr =
1000000, m =1, n =3 (B) or 1 (D)
6 S3.2a,b y=1, v =1, k. =01, k, = 1,
kpr = 1,kns = various, By = 0.1
to led, Bp = 0.0l to le3, m =1, n
=1, any =0.01-0y
S1A 6 p=1to 10

continued on next page. . .
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— continued
Figure Equations | Parameters Initial conditions and com-
ments
S2 1-3 v=01vyr =1, k. =01, k = 5,
krs = 1500, By = 0.1 to 3, Bp =
see function FS2(x), Br =75, n =1
S3ACE S3.4 vy=1,v =1,vg =1, k. = 10000, | Cells initially set in a low
ki =1, kpr = 1, krs = 67, By = | Delta/high Notch condition with
0.1 to 1eb, Bp = 0.1 to 1leb, Sg = | random perturbations from D =
1000000, m =1, n =3 Bp -107% and N = By chosen
uniformly from 410%.
S3BDF S3.1 vy=1 v =1, vg = 1, k. = 0.1, | Cells initially set in a low
ki =1, kpr = 1, krs = 67, By = | Delta/high Notch condition with
0.1 to 1e5, Bp = 0.1 to 1eb, fg = | random perturbations from D =
1000000, m =1, n =3 Bp -107° and N = By chosen
uniformly from +10%.

F2Dm(z) = Sy max (B|z|+ 1 —10.5B,0) where B = {0.02,0.05,0.2}

F2Dl(z) = Sy max (B |z| + 0.5 — 10.5B,0) where B = {0.02,0.05,0.2}

F2Eu(z) = Sy max (B |z| + 1 — 10.5B,0) where B = {0.02 — 0.16}

F2El(x) = fy max (B |z| + 0.5 — 10.5B,0) where B = {0.02 — 0.16}

F3A(z) =

FS2(x) = BN (1 - 2—{1 |o:|> where f = {0.3 — 10}

BN (1 _ S |x|> where f = {0.5 — 2.5}

24
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Derivation of equations governing Notch signaling

With inclusion of mutual inactivation (MI) Notch signaling occurs via the trans-interaction
of Notch (N;) on the surface of a cell ¢ with Delta (D;) on the surfaces of its neighbors j, which
initiates a sequence of biochemical events resulting in cleavage of the Notch receptor to free its inter-
cellular signaling domain (S;) for translocation to the nucleus, where it may induce the expression of
some Notch signaling reporter (R;). Additionally, Notch and Delta on the same cell surface (N; and
D;) cis-inhibit by forming a complex that inactivates both molecules in what we term the Mutual

Inactivation (MI) mechanism [1]. Thus the reactions we consider are the following;:

N;+D; = [N,;D;] —S; trans-activation, with association/dissociation rates kf) and
cleavage rate kg

N;+D; = [N;D;] = @ cis—inhibition, with association/dissociation rates k% and inacti-
vation/dilution rate vy p

S; =R, Signal activation of reporter

The first reaction corresponds to trans-activation, the second to cis-inhibition with mutual in-
activation, and the third to Notch signaling-mediated induction of reporter expression, as described
above. These reactions are described by the following kinetic equations:

. 1 _ 1 _
N =By —Ni = [k D 7 NiDj —kp D — NiDy] | = (KEN:D; — kg [NiDi]) ~ (Sla)
=) =l ¥

. 1 _ 1 _
D; = fp — oD — | kp D T NGD; — kp > 7 N;Di] | = (kENiD; — kg [N:Di])  (S1b)
g=l j=li

IN;D;] = kNiD; — kpy [N;D;] — ks [N;D;] (S1c)

[N;D,] = kEN;D; — kg [NiD;] — v p [N;D] (S1d)

Si=hs Y i [N;D,] — sS; (Sle)
=il

thr; = fa (Si; Bm, 1, krs) — YmMRi (S1f)

R; = agrmg; — 7R (Slg)
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The notation j =[i[ refers to indices j representing neighbors of cell ¢ and [/;; measures the ratio
of the length of the interface between cells ¢ and j and the total perimeter of cell i, reflecting the
assumption that Notch and Delta are uniformly distributed on the cell surface. The increasing Hill
function fa (Si; Bm,n, krs) = Bmﬁzsy phenomenlogically parametrizes the transcriptional promo-
tion process. We assume that the dynamics of the trans intermediate [N;D;], intracellular signal S;,
and the mRNA mpg, are rapid relative to the Notch/Delta and Reporter protein dynamics, allowing
the quasi-steady-state approximation to their dynamics ([NZD]] ~ S ~ mg, ~ 0). Furthermore,
we assume that Notch binds to cis-Delta irreversibly (kg = 0), and thus Notch dynamics become

independent of the [N;D;] complex. With these approximations, the model is reduced to

. D). D;
NiZﬁN—VNz‘—Ni< i o\ (S2a)
ki ke
) N.). D.
D; = pfp —D; — MDi i\ (S2b)
ky ke
. 1 D).
Ri = fa (Ni< m;ﬁR,n, kRs) —rR; (S2c)
s ki
— Bmor -1 _— ki ks 1 — .+ .
where we have defined SBr =, k- = e and k;° = k&, and employed the notation
m D

(Xj), = Zj:] il %X ;j for the average of the enclosed quantity in the neighbors j of cell i weighted
by the magnitudes of the cell-cell interfaces. We have also taken the simplifying assumption that
YN = YD = 7. Solving with different degradation rates is straightforward, and is guaranteed to leave
conclusions relating to the system’s steady-state properties unchanged (as is clear from the freedom

to rescale parameters).
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Excluding cis—inhibition By reviewing the preceding derivation and omitting those terms re-

lating to cis-inhibition, we see that the kinetic equations become

. D.).
N; = fAn —N; — Ni% (S3a)
t
. N.).
D; =pBp —9D; — < kj>ZDi (S3b)
t
. Dy, 1 (D)),
SZ'ZNZ' L 81%04)81%le L S3c
ky 78 s ky ( )
. 1 D).
Ri = fa (Ni< j>1;5R,ﬂ,kRs> —rR; (S3d)
s Ky

Boundary formation

With mutual inactivation If the expression rate of Delta varies spatially (i.e. Sp — fp(x)) the

dynamics of Notch signaling with MI are governed by the following equations:

. D) D;

N; =B —N; — NiM —N;— (S4a)
ky ke

) N.). D:

Di:BD (,CC)—’YD,L— < ]>1Di—NiJ (S4b)
ky ke

. 1 D).

Ri=fa <Ni< J>Z;5R,n, kRs) —rRi (S4c)

s ks

These equations, labeled (1)—(3) in the main paper text, are sufficient to generate sharply-defined
bands of Notch signaling at the crossing point (supposing its existence) between the Delta and Notch

expression rates.

Without cis—inhibition — The Band—Pass Filter model In the absence of cis—inhibition, a
mechanism that explicitly limits the report of Notch signaling to a band of signaling levels is required
for the conversion of a Delta expression gradient to strips of signal Reporter activity. The band—pass
model described in the main text is governed by a modification of the equations (S3a)—(S3d) to allow

for spatially-varying Delta expression and restrict Reporter expression to a narrow band of Signal
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induction levels, yielding the following equations:

. D.).
N; = Bx — YN; — Ni% (S5a)
t
. N.).
t
: (Dj), 1. (Dj)
Si:Ni L 81%0—>Slﬁle L Shc
it <N (S5¢)
. sP kl (Ni (D) .)p kP
R, = Br-5 e o2z — TRR: = 3 I8 RS — yrR; S5d
“hp STk ST Uk + (N (Dy),)” ks + (Ni (D))" (55

corresponding to equations (4)—(6) in the main text.
Lateral inhibition

Transcriptional lateral inhibition with mutual inactivation (LIMI) With the condition
that the production rate of Delta may be repressed by the reporter R;, i.e. 8p — fr (Ri; Bp, m, kpR)
where fr (R;; Bp,m, kpr) = ﬂplﬁg@g% is a repressive Hill function, we have the equations repre-
senting lateral inhibition by transcriptional downregulation of Delta with mutual inactivation. It
is convenient to convert the equations to a set of dimensionless parameters as follows: ¢ = ~ygt,

N=XNX D=2 and R= L where Ny = Dy = vky, and Ry = kpr. The equations are then

= No = Do’ Ro
. D;
TN; = fx = Ni = Ni(Dj); = Ni— (S6a)
. D;
TD; = fr (Ri;ﬂDym»l)*Di*<Nj>iDi*Nil? (S6b)
R = fa (Ni(D)),; Br.n,krs) — R (Séc)
where 7 = 'YTR, On = 'YBTNO’ Bp = 75[1)307 Br = 'nf%o’ Ke = %, and krg = % These correspond

to the equations labeled (10)—(12) in the main text.

Simplest lateral inhibition with mutual inactivation (SLIMI) The mutual inactivation

mechanism permits a lateral inhibition mechanism driven by a single feedback connecting Notch
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expression to Notch signaling, as follows:

N; =anx + fa ( i< ]>l;ﬁN,nyst> _'YNi_NiM_Ni* (S7a)
s kg ks c
. N, D,
t c

where we have included a promoter “leakiness” term (an, representing imperfect repression) in the

kinetic equation for the regulated component, which in this case is Notch. Here we use a set of

dimensionless parameters as follows: ¢t = vt, N = N ,and D = = Where Nog = Dy = vk,
. D;
Ny = an + fa (N (D) Bon ks ) = Ni = Ni (D), = Ny (38)
c
) D;
D; = Bp — D; — (Nj), D; — NZ-K— (S8b)
(&

= on = o = ke = knsyske
where we have defined ay = SNy OBy = 7 , Bp = ’YDO Ke = 35, and kyg = NoDy These

equations are used in Fig. 6.

Without cis-inhibition (LI) With the condition that the production rate of Delta may be

repressed by the reporter R;, i.e. fp — Bpm ko

W’ combined with equations (S3a)—(S3d), we have

the equations representing “canonical” lateral inhibition by transcriptional downregulation of Delta.

It is convenient to convert the equations transforming variables as t = tyg, N = 11\\710 D= —O, and
R = ¢ — where Ng = ﬁTN and Dy = 75,2“—;"3]\%0 to give

TNl' =1- Nl — Nz <D]>7, (Sga)

D; = fr (Ri; Bp,m,1) — D; — (Nj), D; (S9b)

= fa (Ni (Dj),:Br,n,1) — R; (S9c¢)

where 7 = 71" , Bp = D(‘)),y, and g = kDBRR"/R. These correspond to the kinetic equations governing

the system of which certain properties are plotted in Figs. 4D, 5AC of the main text and S3 of the

Supporting Information.
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Linear stability analysis of lateral inhibition equations

It is immediately clear that a necessary condition for spontaneous development of a lateral inhibition
pattern from an initially near-homogeneous collection of cells is the instability of the homogeneous
steady state (N*, D*, R*) in which every cell has the same value of N;, D;, and R;. Thus a linear
stability analysis about the homogeneous steady state can provide necessary conditions for patterning
[2]. The stability analysis requires the computation of the Jacobian at the homogeneous steady state,
which is in this case complicated by the large number of variables (three times the number of cells).
This is made simpler by an observation originally from Othmer and Scriven [3] that the Jacobian
can be expressed as the sum of two tensor products of matrices, one for the internal dynamics and
the other for interactions with neighbors: J = I ® H + M ® B. The matrix tensor product is

a11B -+ aixB

defined as A® B = ( ) Also, here I}, is the k x k identity matrix (k is the number

akllB 'H. (,Lk;‘,B
of cells involved in the interactions in question), H;; = gg’; is the change in production of species
i for a change in species j in the same cell, B;; = 8a<gf> is the change in production of species
J

i for a change in species j in a neighboring cell, and M is the connectivity matrix defined as

1/6 if i and j are neighbors
M;; = . Notch, Delta, and Reporter correspond to species i = 1,2, 3

0 otherwise

respectively.

Once the Jacobian has been written in this form, Othmer and Scriven further show that its
eigenvalues are the eigenvalues of the various matrices H + qp B where ¢ are the eigenvalues of
the connectivity matrix M. An analysis of the matrix M in [3] tells us that ¢ > —0.5, meaning
that we need only compute an eigenvalue for the extreme case qr = —0.5 to determine if the
highest eigenvalue (known as the Maximum Lyapunov Exponent — MLE) has a positive real part,
simplifying the problem enormously. We can execute this process for each of the lateral inhibition
models we have described above to compute their MLE profiles as a function of various parameters,

as plotted in Figs. 5 and 6. The derivations of the MLEs are as follows:

Relevant partial derivatives
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“Canonical” LI

H:; 0 —1-(N;); —gpmfafrm
T fazfr2 O -7

Where
fAl = fA (Ri;ﬁD7m71)a le = fR (R176D7m71)

faz = fa (Ni(D;);;Br,n,1), fr2 = fr (Ni(D;),;Br,n,1)

0 —-N; 0

-D; 0 0

0 5up; /A (S Bron, 1) fR (S35 BRoM, 1) O

LIMI

*(1+<Dj>i+Di> - 0
1
H = p — L. —(1+<Nj>i+%) —gom Ja R
3, JA3[R3 0 -7

Where

fAl = fA (Ri;ﬂDama 1); le = fR (Ri;ﬂDama 1)

faz = fa(Si; Br,n,krs), frs = fr(Si; Br,n, kRrs)

0 —N; 0

-D;, 0 0

0 50; /4 (Si5 Br,n, krs) fr (Si; Br. 0, kRS) 0
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SLIMI

o fa (S By, n, kns) fr(Si By, n,kns) — (1 +(Dj); + %) —

D — (1 V), + )

Re Re

H =

0 anp; fa (S By, n, kns) fr (Si; By, n, kns) — Ni
B = !

-D; 0

Evaluation of the homogeneous steady state In each case the homogeneous steady state of
the system was found numerically by solving the systems of equations for N; = N, D; = D, and (if

relevant) R; = R.

Diagonalization of the reduced Jacobian The matrices H and B, evaluated at the values N,
D, and R fixed by the homogeneous steady state, were combined as prescribed in [3] and diagonalized
with gx = —0.5 which is the extreme eigenvalue of the structure matrix M for a regular hexagonal
lattice. The diagonalization may be written explicitly in terms of the homogeneous steady state
values and ¢, in each case because the characteristic equation is of order three or less, but the
expressions are complicated and not very illuminating. The maximal resulting eigenvalue is the

MLE.
Noise in boundary formation

As written in the main text, based on an intuitive understanding of the mutual inactivation mech-
anism we suspect that MI-based models might be more sensitive to intrinsic sources of noise (con-
tributing to uncorrelated variabilities of Notch and Delta production in a given cell) than those that
are extrinsic (by which the Notch and Delta production rate variabilities in a given cell are corre-
lated). To test this we numerically simulate the boundary formation process subject to static noise
in the Notch and Delta production rates with varying degrees of correlation between their variability,
ranging from fully-intrinsic (correlation coefficient = 0) to fully-extrinsic (correlation coefficient =
1). In order to make the comparisons in the outcome of interest (the variability in the location of

the vein boundary-defining peak) fairly we must also be able to control the total variability in the
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Notch and Delta production rates independently of the correlation between them.
Using a model of multiplicative noise, in which the production rates of Notch in each cell are
Bn,i = &nv (Bn) and the production rates of Delta are Sp,; = &p (8p), we thus seek to draw the

random variables €5 and £p such that:
1. Means are preserved, with (¢x) = ((p) =1
2. Standard deviations are equal and set to some arbitrary o, with o¢y, = 0¢,, =0

3. The correlation between the variations in each production rate is some arbitrarily chosen r

between zero and one, with r¢ ¢, =7
4. Unphysical negative production rates are excluded, with &nx,&p > 0.

We have chosen a mechanism of achieving this that entails choosing two uncorrelated random
variables x and y from normal distributions of mean zero and standard deviations o, and oy,
respectively, rotating x and y by an angle 6 and shifting the result by A in each direction to generate
distributions u and v, and then exponentiating each to generate the final distributions g, and £z,,.
The required conditions fix the free parameters o,, oy, 0, and A as follows:

The distributions v and v are drawn from u = z cos § —y sin 0+ A and v = z sin 0+y cos 0+ A, from
which we have that (u) = (v) = A, 02 = 02 cos® 0 + o7 sin?@, and o2 = 02sin’? 6 + o7 cos?§. Then
the distributions £y and £p drawn from £y = e* and £p = €V yield (Ey) = eA20, (£p) = eM 200,
of = (en)? (6"3 - 1), and o7 = (&p)° (e"5 - 1). By the first requirement that the averages
of the random variables { must be equal to one, we have that o, = 0, — 0 = 7, and that

1.2 . . 2
1=eM320%u 5 A= —%ai. The second requirement provides 0% = ¢« —1 — 02 = In (02 + 1) - A=

f% In (02 + 1). The final condition r¢ e, = 7 provides o?r + 1 = (Ex&p). By computing (Enép) =

(evtv) = 2A <e‘/§$> = e2A 9% this provides 02 = In ((02r—|— 1) (02 + 1)) and correspondingly
2
U; =In <T2_2t_11).

Thus the following algorithm generates positive random distributions £ and £p such that their

means are one, standard deviations are o, and correlation coefficient is r:
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1. Draw from two independent normal distributions x and y with means zero and standard

deviations o, = \/In ((02r + 1) (62 + 1)) and 0, = {/In (r[:;t-ll)

2. From these, generate two related random distributions v = % (x—y) — %ln (02 + 1) and

v= %(m—i—y)—%ln((ﬂ—f—l)
3. Let £y be drawn from e* and £p be drawn from e
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3.2 Mutual inactivation of Notch and Delta permits a simple

mechanism for lateral inhibition patterning

Abstract

Lateral inhibition patterns mediated by the Notch-Delta signaling system occur in diverse develop-
mental contexts. These systems are based on an intercellular feedback loop in which Notch activation
leads to down-regulation of Delta. However, even in relatively well-characterized systems, the path-
way leading from Notch activation to Delta repression often remains elusive. Recent work has shown
that cis-interactions between Notch and Delta lead to mutual inactivation of both proteins. Here
we show that this type of cis-interaction enables a simpler and more direct mechanism for lateral
inhibition feedback than those proposed previously. In this mechanism, Notch signaling directly
up-regulates Notch expression, thereby inactivating Delta through the mutual inactivation of Notch
and Delta proteins. This mechanism, which we term Simplest Lateral Inhibition by Mutual Inac-
tivation (SLIMI), can implement patterning without requiring any additional genes or regulatory
interactions. Moreover, the key interaction of Notch expression in response to Notch signaling has
been observed in some systems. Stability analysis and simulation of SLIMI mathematical models
show that this lateral inhibition circuit is capable of pattern formation across a broad range of
parameter values. These results provide a simple and plausible explanation for lateral inhibition

pattern formation during development.

Introduction

Multicellular development often involves transitions from initially near-homogeneous tissues to ‘fine-
grained’ patterns involving sharp distinctions between neighboring cells. One such pattern is “lat-
eral inhibition” (LI), characterized by alternating patterns of ‘on’ and ‘off’ states such as those
diagrammed in Fig. 1. This phenomenon is pervasive, arising in situations as diverse as butterfly
wing coloration [1], neuroectoderm specification [2], ciliated cell specification [3], and sensory organ
precursors [4].

LI patterning in these and other contexts is mediated by signaling through the Notch-Delta
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system. The Notch-Delta system (reviewed in [5-8]) consists of the Notch receptor family and
its Delta-family ligands (blue and red molecules, respectively, in Fig. 2), along with numerous
participants in the signaling mechanism. Delta interacts with Notch in two modes (Fig. 2b):
activating Notch signaling in neighboring cells (trans-activation) while inhibiting Notch signaling
in the same cell (cis-inhibition). LI patterning can occur when Notch signaling downregulates
Delta levels. This downregulation is usually assumed to be mediated by a transcriptional repressor,
although it could also be implemented through post-transcriptional mechanisms (Fig. 2¢). Under
certain conditions [9,10] a high level of Delta in one cell will drive all of its neighbors to low levels
of Delta expression. Conversely, a cell whose neighbors are all Delta-poor will eventually express
Delta at a high level. This generates the lateral inhibition pattern of Fig. 1b with high-Delta cells
(red) surrounded by low-Delta cells (white).

The feedback pathway inhibiting Delta expression in response to Notch activation may be known
in certain cases [11]. However, in many contexts it remains unclear what components, if any, play
this role [12]. On the other hand, in some natural systems such as vein patterning [13] and lateral
inhibition [14] Notch activation is known to induce Notch expression. Further, a recent quantitative
study of the Notch signaling response function uncovered evidence for mutual cis-inhibition [15]. Not
only does Delta inactivate Notch signaling in cis as drawn in Fig. 2b, but Notch also reciprocally
inactivates Delta as drawn in Fig. 2d.

Here we report that the mutual inactivation model of cis-inhibition admits the possibility of a
remarkably simple mechanism for achieving lateral inhibition. Notch signaling upregulation of Notch
receptor expression, combined with the mutual inactivation mechanism, directly downregulates Delta
levels in response to Notch signaling (Fig. 2e). Mathematical analysis of this feedback circuit
shows that it can generate the LI pattern and provides some advantages compared to the canonical
architecture. We describe this as the Simplest Lateral Inhibition by Mutual Inactivation (SLIMI)

model.
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Results

In order to analyze the SLIMI circuit, we assume an ideal two-dimensional lattice of hexagonal cells,
each containing Notch (N;) and Delta (D;) interacting in ¢rans to generate Signal (S;) that induces
Notch expression, and in cis with mutual inactivation. Correspondingly, we consider the following

reactions:

N; +D; = [N;D;] = S; trans-activation (1)
N;+D, = [N;D;] - @ cis-inactivation (2)
Si = N; Notch induction (3)

Reaction 1 refers to trans—activation in cell 7 by ligand on neighboring cells j, with Notch-Delta
trans association (dissociation) rate kj; (k) and signal release rate ks. Reaction 2 refers to cis—
inhibition, with Notch-Delta cis association (dissociation) rate kg, (k;) and mutual inactivation
rate kp. Reaction 3 refers to Signal activation of Notch expression, which we parametrize as a

n

contribution to the rate of Notch production in the form of an increasing Hill function (BSNK,LS*_FS")
SN (3

Allowing for “leakiness” in Notch production (non-zero production rate Sy in the absence of inducer),

constant constitutive production of Delta (8p), linear degradation of each component(—yN; and

—~D;), and taking the quasi-steady-state approximation on the receptor-ligand complexes and the

Signal molecule, these reactions translate to the following set of ordinary differential equations:

N, — 5N+BSNM_'YN‘
i = n n n i
K& + N (Dj);
(D;), D;
5 N S Nt 4
a . (4)
. D, D,
D= fp—9Di = (N;); 7=~ Nip™ (5)
t c

Here we have employed the notation (-;), to denote the average of the enclosed quantity among

+ +
the neighbors j of cell i. We define the parameters k; ' = "ok and kit = R 46 denote
kp +ks kG +kE

the strengths of the trans and cis interactions, respectively. Numerical simulation of these equa-

tions proves that they are capable of generating the LI pattern from a slightly (and randomly)
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heterogeneous field of cells (Fig. 3a).

In order to more generally determine conditions under which this system of coupled, non-linear
differential equations can generate the LI pattern, we performed a linear stability analysis about the
system’s homogeneous steady state (hss). If the hss is stable (unstable) to small perturbations, it
follows that the LI pattern is inaccessible (accessible) from an initial condition near the hss. This
analysis required computing and diagonalizing the Jacobian evaluated at the hss, and the system’s
stability there was determined by the sign of the maximal eigenvalue (known as the Maximum
Lyapunov Exponent — MLE). Where the MLE is positive the hss is unstable, and the LI pattern is
accessible.

Computing the MLE requires knowledge of component leves at the hss, defined as the solutions

to NZ = DZ = 0 subject to N; =N and D; = D. With S=ND and A = k% + k%’ this condition is

n

LA
K"+

2
y S

_ —A =

—I—A S=0 (6)

BN + Bsn S B
A

We used this equation to determine the homogeneous steady state values N* and D*.

Directly diagonalizing the full Jacobian J, a matrix of dimension twice the total number of
cells in the lattice, would be very difficult. Othmer and Scriven [16] showed that the problem can
be simplified by separating cell adjacency-related intercellular contributions from the intracellular
dynamics of the signaling system itself. This approach first diagonalizes the structure matrix M (in
which M;; = % where cells ¢ and j are neighbors and M;; = 0 otherwise) in isolation to yield its
spectrum g. The eigenvalues of J are then the eigenvalues of H +q; B, where H and B represent the

modulation of production rates due to changes in intra- and extra-cellular components, respectively.

These relationships are represented by the partial derivatives H,, = BU“_" and By, = a‘?ﬂ;_ where u
i FE]

and v index the chemical species involved in the interaction (here, Notch and Delta) and i,j are cell

indices.
Bsnie fogo =y =AD" — N7

—1D* —y — AN*
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0 Bsn = fogo — =N~
B= P . (8)
1 *
-%D 0
Ko (N*D*)™ . .
where fy = 71@ (XD and gy = I F(N°D )7 The Othmer and Scriven method thus involves
only diagonalizing one large (but sparse) matrix M representing the cell-cell adjacency of the system,

and then diagonalizing a small two-by-two matrix.

The characteristic equations of the Jacobian are then

Bsn = fogo — (%-F%)D - A (_k%_Qkk%)N*‘FQkBSNfSL*fOQO
(< —at) D" —y= (A +E)N -2
1 (T
A=>|< -2y AN+D
- 2<N 7 - AN+ D)

i\/(—;+2’y+A(N+D)> —4<ND( —02)+ Ay(N+D)+T (g — A) + 72—1I:I’y>

where I' = Bsnnfogo, 0 = k% + qkk%, and asterisks are omitted. The sufficient criterion for homoge-
neous steady state instability is ND (A% — %) + Ay (N+ D) + I' (g — A) +~* — %7 < 0. For the
ideal hexagonal lattice of cells with periodic boundary conditions that we consider, the minimum gy,
(chosen because it corresponds to the MLE, which is the maximual eigenvalue of J) is calculated to
be -0.5.

The numerical solutions for the MLE plotted in Fig. 3b for particular choices of parameters are
illuminating. Even with no explicitly sharp molecular interactions (n = 1), there is a sizable region
bounded by minimal and maximal Sp values over which the MLE is positive, and thus the system
may achieve a lateral inhibition pattern as shown in Fig. 3b. A potential shortcoming of the SLIMI
mechanism is its sensitivity to leakiness in Notch expression (i.e. non-negligible fy). Fig. 3c plots
the MLE profile for progressively greater leakiness in Notch expression indexed as a percentage of
maximal Notch induction (i.e., fx = {Bsn for [ described above the appropriate plot), from which

we see that the SLIMI model is fairly robust.
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Discussion

The SLIMI model described here is an extraordinarily simple approach to LI patterning through
the Notch-Delta signaling system, conceivable only by virtue of the previously-unappreciated inac-
tivation of Delta by Notch in cis. It is appealing for a number of reasons. First, we have shown
that SLIMI is a feedback architecture that supports the formation of the LI pattern across a wide
range of parameters. Second, it does so even in the presence of non-ideal leakiness in the regulatory
feedback. Third, and perhaps most dramatically, it does not require the action of any hypothetical
intermediate factor. The sole necessary regulatory interaction has been shown to occur naturally
[13,14] in at least some contexts.

Appealing though these features of SLIMI may be, it remains uncertain if natural systems in
fact utilize this feedback to generate LI patterns. Results regarding Notch-Delta feedback elements
operating in lateral inhibition patterning processes are varied at present, seemingly indicating a
degree of context specificity [17,18] that defies efforts to postulate a universal mechanism. As
mentioned earlier, there is some evidence for increased Notch expression rates induced by Notch
signaling in LI-patterning systems [14], but the contribution of this relative to that of other feedbacks

in driving the patterning process is unknown.
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Figure 1: (a) Two initially near-equivalent cells in direct contact eventually reach very different
final states, characteristic of ‘fine-grained’ patterning. (b) An ideal lateral inhibition pattern in a
two-dimensional field of cells.

(a) ‘_rl Notch k I Delta
c)

trans-activation

P
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trans-activation

cis-inhibition

(mutual)
Figure 2: (a) Notch (blue) and Delta (red). (b) Notch and Delta interact in ¢trans (on neighboring cell
surfaces) to send the intracellular Signal domain (green) of Notch to the nucleus. Delta also inhibits
Notch in cis (on the same cell surface). (¢) A canonical lateral inhibition feedback in which Notch
signaling induces expression of an intermediate (yellow) that represses Delta expression. Although
not explicitly drawn in the figure, the same feedback operates in all cells. (d) The trans and cis
interactions of Notch and Delta, with a mutual inactivation of the receptor and ligand in cis. (e)
A surprisingly simple lateral inhibition feedback network in which Notch signaling induces Notch
expression, which directly inactivates Delta by the mutual cis-inactivation mechanism.
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Figure 3: (a) Outcome of a numerical simulation of the SLIMI mechanism colored as in Fig. 1b.
(b) Maximum Lyapunov Exponent (MLE) computed across a range of Delta production rates Op
and maximal Notch production rates sy, with other parameters fixed including n = 1. The region
within the contour is above zero, indicating instability of the homogeneous steady state and thus the
potential to generate the LI pattern. (¢) MLE computed at n = 2 with increasing levels of ‘leakiness’
in Notch expression, leading to some shrinkage of the patterning-permissive parameter range.
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3.3 Mutual cis-inactivation in the Notch-Delta signaling sys-

tem affects lateral induction patterning
Introduction

The Notch signaling system is among a few canonical mechanisms by which cells transfer information
[1]. In Drosophila, where its effects were first identified, the system consists of a single Notch receptor
and two ligands, Delta and Serrate, all of which are transmembrane proteins. The system is highly
conserved across metazoans to mammals, in which there are four variants of the Notch receptor, three
members of the Delta family, and two of the Jagged family (the ligands are known jointly as “DSL”
ligands) [2]. In spite of this additional diversity in the receptor and its ligands, much of the core
interactions in the system is preserved. A signaling event is initiated by binding between a receptor
on one cell with a ligand on the surface of a neighbor. The subsequent force on the receptor related
to endocytosis exposes a site to proteolytic cleavage, leading to liberation of the receptor intracellular
domain (its signaling domain) into the cytosol. The signaling domain is trafficked to the nucleus,
where it acts on downstream targets of the system by relieving repression of their expression (Fig.
la) [3]. In addition to this trans-activation of the system, more recent studies have elucidated the
quantitative nature and developmental relevance of an inhibitory interaction between receptor and
ligand in the same cell [4,5]. Although the precise molecular details of the interaction are not known,
some features of it are. Clis-inhibition is a mutual inactivation of receptor and ligand that, when
strong, tends to drive cells into either ‘receiver’ or ‘sender’ states, dominated by an excess of Notch
or ligand on the cell surface, respectively. Experiments have established qualitative relationships
between the cis- and trans- affinities of various receptor-ligand pairs, which differ substantially and
are modulated by other components of the Notch system known as Fringes [6].

A wide variety of developmental patterning processes require signaling through the Notch system
in order to function. The morphology of the Drosophila wing — in many contexts, including its DV
boundary [7] and the sharpness of its vein boundaries [8] — is disrupted by Notch and Delta/Serrate

mutants. In developing sensory organs including Drosophila bristles [9] and the mammalian inner ear
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[10] Notch signaling is required for generation of an alternating “checkerboard” pattern to specify
the correct number and arrangement of cells for each sensory patch. The patterning outcome in
each case depends on the combination of signaling system properties and downstream feedback.
A number of theoretical analyses have been performed on various types of downstream feedback,
including downregulation of ligand due to Notch signaling (lateral inhibition) [11] and the opposite,
upregulation of ligand by Notch signaling (lateral induction) [12]. However, these analyses have
not included cis-inhibition in their models. We have previously reported that cis-inhibition in the
context of lateral induction has a number of quantitative and qualitative consequences, including
relaxing a requirement for explicit cooperativity in the feedback and enabling patterning with an
exceptionally simple mechanism [13]. It remains unclear now cis-inhibition affects patterning in
lateral induction feedback.

Lateral induction through the Notch signaling system has been proposed as a mechanism in a
number of developmental contexts. Domains within the developing mammalian inner ear which limit
the extent of prosensory patches are thought to be reinforced by lateral induction [14,15]. The differ-
entiation of certain cells in the developing rat lens involves a lateral induction process [16]. Recent
reports have established a Notch-mediated lateral induction process underlying the specification of
smooth muscle cells lining a subset of the developing large arteries in mice [17]. This latter example
is especially straightforward. The developing artery is initially sheathed in a layer of endothelium
surrounded by undifferentiated mesenchyme. At some cue, the endothelium begins expressing Jagl.
A lateral induction interaction, shown to be a direct effect of Notch signaling on Jagl expression,
propagates a high-ligand domain outward across the mesenchyme until it mysteriously terminates,

at which point cells high in Jagl differentiate into smooth muscle to line the artery.

Results

Lateral induction of ligand in a single cell is limited by cis-inhibition

We first analyzed the response of a single cell with the lateral induction feedback to stimulation by

trans ligand. The cell expresses Notch receptor at a constant production rate o, which degrades in
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a first-order linear process with rate . Interactions of Notch with ligand in cis (D) and trans (Dy)
destroy the receptor, with interaction strengths k! and k; L respectively. The trans interaction
generates Signal (9, the Notch intracellular domain) at the same rate as trans destruction of Notch,
with linear first-order degradation of the Signal at a rate g considerably larger than ~. Ligand is
expressed at a constitutive background rate ap, summed with a lateral induction term represented
by an increasing Hill function of S. The Hill function is defined by a maximum magnitude Bgp,
affinity ksp, and sharpness n. Ligand degradation also follows a linear first-order process of rate
7, along with the cis destruction term of strength k. '. The differential equations governing the
signaling process are described in the Methods section below.

For a given quantity of trans ligand (D;) weaker cis-inhibition leads smoothly to greater expres-
sion of cis ligand (Fig. 1c). An intuitive explanation for this feature is illustrated in Fig. 1b. The cis
ligand generated in a lateral induction cell with strong cis-inhibition will compete effectively against
the trans ligand for binding to receptor molecules, decreasing the magnitude of the response relative
to a system with weaker cis-inhibition. Thus, the cis ligand participation in strong cis-inhibition
represents a negative feedback on the Notch system, decreasing the overall signal response. Also
as expected, increasing the amount of trans ligand increases the induced cis ligand. The inverse
relationship between cis-inhibition strength and induced ligand is maintained across all levels of Dy,
although it is not easily appreciated when D, is supplied in overwhelming excess.

As Dy is varied, the maximal quantity of induced cis ligand is % (aD + Bsp M%),

achieved when Dy is sufficiently large. The scale of D; that constitutes “sufficiently large” itself

OéN]C

varies with the system parameters, as > e

. Both of these expressions are consistent with the
results of numerical simulations of the system (Fig. 1d). Increasingly strong cis-inhibition distorts
the induced response profile rightward, so that for the same amount of trans ligand a lower amount
of cis ligand is generated (Fig. le, left). The opposite relationship occurs between the strength
of the trans interaction and the induction of cis ligand (Fig. le, right). We also observe that the

graded response of cis ligand to D; stands in contrast to the sharply piecewise-linear response of

cis ligand to variation in the constitutive cis ligand production rate (as observed in [13]). In other
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words, cis ligand is not ultrasensitive to trans ligand in lateral induction cells in the same way that

a feedback-free cell’s cis ligand is ultrasensitive to ligand production rate.
Ligand expression gradients are highly sensitive to lateral induction system parameters

We then moved on to analyze multicellular systems, first considering the potential for Notch signaling
to generate a morphogen-like spatial gradient. As illustrated in Fig. 2a (left), we simulated a regular
two-dimensional hexagonal lattice of cells. Each cell is governed by the same dynamics as the single-
cell case described earlier, with two exceptions: first, rather than providing the amount of ¢rans
ligand exogeneously as the parameter D, it is instead the average of the amount of ligand in each
of the neighboring cells; second, we include an additional degradation term for ligand to reflect its
consumption in the process of trans activation. In our model of gradient formation one column of
cells (the leftmost, as drawn Fig. 2a) is fixed to uniformly express a high level of ligand (the signaling
“source”). This boundary condition was set at the maximum possible induced cis ligand level to
facilitate comparison between different parameter sets. For certain parameter values the system
evolves to a one-dimensional gradient of cis ligand perpendicular to the source (Fig. 2a, right, the
darkness of red corresponds to the ligand level). The example in the figure is an exceptional one in
its length.

Simulation reveals a strong parameter sensitivity of the gradient length to the system parameters,
portrayed for two of them (the strength of cis-inhibition and the affinity of the cis ligand induction
interaction) in Fig. 2b. For several values of each parameter, we computed the gradient length
scale. We choose as a measure of the gradient length scale the distance from the source cells at
which the induced cis ligand has reached a level that is twice that of the profile minimum. The
results are qualitiatively similar for a different definition of the gradient length scale given by the
distance required for the cis Delta profile to diminish from 90% to 10% of its range. As seen in
Fig. 2b, for both the cis-inhibition strength and induction affinity parameters the gradient length
scale tends to be low except for very local spikes about specific parameter values. Thus we see that
longer-range gradients by Notch lateral induction are very sensitive to system parameters. We note

that the gradient requires a constant supply of ligand in the source cells, and when this is removed



127

the system returns to the homogeneou low-ligand state.

Spatiotemporal front propagation requires population-level bistability and a sufficiently
strong initial stimulus

We next considered a dynamic spatiotemporal pattern: front propagation across a field of cells. In
this process a collection of cells transitions from a low-ligand homogeneous steady state to a high-
ligand homogeneous steady state. The transition is initiated by the same sort of boundary condition
as in the model of gradient formation described above, a column of high-ligand source cells at one
end of the strip of cells. In this case, however, instead of each subsequent column of cells expressing
less ligand than the one before it, the increase in ligand is sustained from cell to cell. As a result
there appears to be a high-ligand front progressing away from the source cells. Because multiple
steady states are required for this behavior, we probe the structure of homogeneous steady states
of the system. With respect to the receptor production rate, for instance, we plot the intersection
(or intersections) of nullclines representing steady state levels of receptor and ligand as a function
of varying ay in Fig. 3a. Below a critical value of the receptor production rate there is only one
stable steady state (black line, against a light blue background), while above there are three (light
red background). Of those three, only the high-ligand (red line) and low-ligand (black line) steady
states are stable. The middle steady state (blue line) is unstable. At a given value of the receptor
production rate, the level of Delta corresponding to the middle steady state is the threshold above
which all of the cells in the system must be raised in order to uniformly transition the system from
the low- to the high-ligand state. This is related, although not simply, to the amount of ligand
required in a high-ligand source to ‘kick off’ the front across the lattice of cells (Fig. 4). Because the
new state is stable, after a minimal time related to the intracellular dynamics the front will continue
to propagate through the lattice even if the source is turned off. We can compute the number of
steady states for various parameter values, such as for the trans and cis receptor-ligand interaction
strengths (Fig. 3b). In this case we see that at strong cis and trans strengths an approximately
linear relationship between the parameters is required to support front propagation (lower left corner

of Fig. 3b). At weaker strengths (elsewhere in Fig. 3b), the ability to sustain front propagation with



128

respect to cis interaction has only a cutoff at high strength, while with respect to trans strength
must be bounded between two values. One strict requirement is that the feedback cannot be totally
graded (i.e., its cooperativity n must be greater than 1), but the amount of sharpness in the lateral
induction term can be arbitrarily small if other parameters are chosen appropriately.

Lateral induction effectively converts a slow variation in parameters to a sharp bound-
ary between cell types

Neither of the two patterns analyzed above, gradient formation or front propagation, are reported
to arise from Notch signaling-mediated lateral induction processes in natural systems. Instead,
each case involves an approximately homogeneous expression of a high level of ligand across a
restricted spatial domain. For instance, the layers of smooth muscle surrounding certain large
arteries in the mouse are known to be specified by high levels of ligand initiated and maintained
by a lateral induction feedback [17,18]. The outer layer of endothelium surrounding the developing
artery begins to express Jagl, which signals to the surrounding mesenchyme. The mesenchyme
responds by beginning to adopt the smooth muscle fate and upregulating its own Jagl expression,
which transmits a Notch signal to the next layer of mesenchymal cells. This process iterates through
a specific number of layers until, for reasons currently unknown, it terminates [17].

We have previously reported that the Notch signaling system can convert shallow gradients of
ligand expression rates to sharply-delineated bands of signaling activity [13]. Motivated by this,
and noting that the accessibility of a high-ligand homogeneous steady state is sensitive to system
parameters that are known to be modulated in natural systems, we asked if lateral induction in
the background of a shallow gradient in one or more of the system parameters could solve the
termination problem (Fig. 5). To achieve this we once again simulated a hexagonal lattice of cells
with a boundary condition enforcing high-ligand source cells at one end. We modified the parameter
values in each cell to reflect the desired gradient — for instance, k! for a gradient in cis-interaction
strength (Fig. 5a), or ay for a gradient in Notch expression (Fig. 5b). In both cases the gradients
were constructed to begin in a region of parameter space that supports homogeneous bistability

and end in a region that does not. As indicated in Fig. 5, both gradients generate relatively
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homogeneous ligand expression within a limited domain. The lengthscale of the termination of the
ligand profile in each case is appreciably shorter than the lengthscale of the gradient underlying it,
to a greater degree for the gradient of cis-inhibition strength than that of Notch expression. We
thus show that lateral induction can convert a show variation in parameters to a sharp boundary
between high- and low-ligand cells. This gradient interpretation could conceivably also be achieved
directly by a response to the gradient molecule that is very sharp. In this sense, we can say that
for defining a near-homogeneous, limited spatial domain of cells, lateral induction substitutes for
explicit cooperativity in the feedback circuit. This observation also suggests experiments to probe
the spatial distribution of known modulators of Notch signaling, for example the Fringes which
modulate Notch-ligand affinities or expression of Notch receptors themselves, especially in contexts
such as arterial wall formation where there are known to be gradients of other signaling factors with
as-yet undefined effect.

Lateral induction with strong cis-inhibition and delayed feedback allows pulse propa-
gation

We have shown that the cis-inhibition interaction provides an intrinsic negative feedback on the
lateral induction interaction. This negative autoregulation is half of what we would expect to be
required for the generation of a soliton-like pulse that propagates across a field of cells, along with
a time delay in the lateral induction feedback circuit. We assessed whether this delay could be
provided by rendering the Notch signaling intermediate (S, the receptor’s intracellular domain)
persistent. Once again modeling on a hexagonal lattice of cells with a high-ligand boundary source
at the initial time, we find that a single pulse can be triggered by a transient source (Fig. 6a). The
pulse propagation is unchanged if the boundary source is allowed to persist throughout the process,
as the parameters do not allow multistability and thus the effect of the boundary is restricted
to a short-range gradient of the type discussed earlier. We simulated this process for a variety of
parameters. The plots in Fig. 6 indicate whether a given parameter set supported pulse propagation
(red for high-magnitude pulses, white for marginal pulses, blue for no pulses). The shape of the

pulse-permissive patches allows us to refine our intuition for the system. We observe that pulsing is
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restricted to a patch of sufficiently strong cis-inhibition and sufficiently long-lived S. The patch is
also bounded when cis-inhibition becomes too strong because under those conditions an insufficient
quantity of S is generated to maintain the feedback delay at the necessary strength. The upper bound
on S lifetime reflects a threshold beyond which the persistence of signal is so great it overcomes
the negative cis-inhibition at any strength. We also studied pulse dependence on the maximal
ligand production rate and the lateral induction affinity. The linear relationship between the two
along the area allowing pulsing arises because the increased lateral induction output of a higher-
affinity interaction is compensated by decreasing the scale of ligand, allowing the system to behave
qualitatively similarly along the line in this parameter space. Pulses of this sort are not known to
occur in any natural context, but in a cell culture system using existing techniques to increase the

lifetime of the Notch intracellular signaling domain it may be possible to achieve synthetically.

Discussion

We find that Notch signaling coupled with downstream lateral induction to generate long-range
morphogen-like gradients is not an effective mechanism, because it is not robust to parameter fluc-
tuations. The evidence provided by our simulations above supports this claim. Furthermore, an
intuitive line of reasoning suggests why any juxtacrine signaling-mediated gradient is likely to be
very sensitive to variation in its parameters. The basic feature of signal response is the input-output
relationship, in this case the connection between the amount of ligand used to stimulate the cell
(input) and the amount generated by the cell as as result (output), which defines a “signal response
curve” on a ligand input-output plane. In a regular lattice of cells in contact with one another the
value (or values) of ligand at which the output is equal to the input correspond to the homogeneous
steady states of the system, which are thus identified by the intersection(s) of the signal response
curve and the diagonal line on the ligand input-output plane. A perturbation provided by a bound-
ary cell fixed to generate a high level of ligand induces excess signaling in its neighbors, driving
them to ligand levels above the homogenous steady state. In order for the gradient to be long-range,

the response of the neighbors should be close to the amount by which they were stimulated. This
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implies that the signal response curve should be very close to the diagonal. If it deviates significantly
there is a twofold penalty against the gradient length: first in the direct sense that each subsequent
neighbor produces less ligand, shortening the gradient; and second in the indirect sense that the
amount of input ligand to each cell becomes much less than the amount provided by the greater
neighbor if the gradient becomes shorter. However, even if we suppose that the signaling system
permits a response that is nearly linear over a large range of ligand input, it would be a response
that sits on a ‘knife edge’, just below the diagonal line, where a slight perturbation upward would
send the system into a higher homogeneous state and a slight perturbation downward would dra-
matically shorten the gradient. This intuition is not exact, but it motivates the observed behavior.
Returning to the particular situation we consider here, the specific signal response curves accessible
by Notch signaling can be made nearly linear over long distances (corresponding to the high points
in the gradient length plots above) but small parameter variations dramatically shorten the resulting
gradient.

On the other hand, when the lattice of cells is bistable in ligand expression Notch-mediated
lateral induction effectively allows propagation of a signal front across the lattice to transition it
from the low to the high state. Even though the population-level bistability is a global property, a
local pertubation to one side of the lattice (or even in one cell, if it is suitably strong) is sufficient
to induce a switch in the entire collection of cells. This provides a means of coordinating a change
in cell state across a large number of cells that can be induced by an initiating factor that is
initially localized to a small spatial area. Such a procedure, however, does not by itself provide for a
mechanism by which the front propagation can be terminated. This is a very relevant shortcoming
in light of the spatial restriction of the Notch-mediated lateral induction processes that have been
reported in the literature [17,18]. Motivated by the knowledge that known modulators of the Notch
system affect its signaling parameters, and observing that changes in those parameters can take a
system from a state that supports bistability to one that does not, we have found that slowly-varying
gradients of system parameters lead to a sharp termination of front propagation. This is related

to a previous finding we reported in [13], in which the Notch system converts a shallow gradient of
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ligand expression rate into sharly-defined peaks of Notch signaling. The Notch system with a lateral
induction feedback again provides a mechanism for converting a graded input into a sharp output
without requiring a corresponding level of explicit cooperativity in the regulation.

Finally, the intrinsic negative feedback on the Notch system provided by cis inhibition decreases
the number of modifications that would be needed for propagation of a pulse across a field of cells.
Such a pulse requires a negative feedback on the signaling response along with a delay in the positive
feedback reponse to signaling. Cis inhibition provides the former, while increasing the lifetime of the
signaling intermediate provides the latter. With knowledge of factors regulating the rate of protein
degradation [19], and techniques for modulating decay timescales [20,21], the intracellular domain
of Notch could be replaced with a subunit of much longer lifetime. Tuning the intracellular domain

degradation rate and observing the outcome is a potentially accessible experiment.
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Figure 1: Notch signaling-mediated lateral induction is negatively regulated by cis-inhibition. (a)
The Notch signaling system consists of Notch receptors and DSL ligands, which interact on neigh-
boring surfaces to trans-activate the system (green circle) and on the same surface to cis-inhibit it
(red cross-circle). Lateral induction refers to upregulation of ligand expression in response to Notch
signaling (right). (b) Stronger cis-inhibition should lead to a diminished Notch signaling response
to an idential trans ligand stimulus. In the cell with stronger cis-inhibition, a greater part of the
ligand expressed due to lateral induction will successfully compete away the trans ligand, leading to
less signaling. (c) Plots of induced cis Delta as a function of cis-inhibition strength indicate that
as cis-inhibition becomes weaker (as the z axis increases), the response of a cell to trans ligand
becomes stronger. At any value of cis-inhibition strength, the response of the cell is increasing in
trans ligand. (d) The single-cell response to trans ligand is influenced by both cis-inhibition and
trans-activation strength. As the cis(trans) interaction becomes stronger, the induced ligand profile
moves lower(higher).
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Figure 2: Gradient formation by Notch-mediated lateral induction. (a) A regular hexagonal lattice
of cells containing the lateral induction feedback is stimulated by a column of high-ligand source
cells from the left. Under these circumstances, if the source is maintained at its high level a gradient
of cis ligand forms (darker red corresponds to more cis ligand). (b) Plots of the cis ligand gradient
lengthscale as a function of cis interaction strength and lateral induction affinity show that the

lengthscale is typically quite short, but for very small parameter ranges can be reasonably large.
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Figure 5: Bistable lateral induction can convert a gentle gradient in the system parameters to a sharp
delineation between populations of high- and low-ligand cells. (a) A linear gradient of cis-inhibition
strength is converted to a ligand profile that drops off much more steeply. (b) A similar phenomenon
is observed with a gradient in the Notch expression rate, but the effect is less pronounced and the
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Our model incorporates the concentrations of three species in each cell: Notch receptor (N), DSL

ligand (D), and cleaved intracellular Notch signaling domain (S). N interacts with trans D on

neighboring cell surfaces by second-order kinetics with rate k; ! (a function of the receptor-ligand

binding, unbinding, and cleavage rates) to generate S in a process that destroys both N and D at

the same rate of S production. N and D in the same cell also interact in cis, leading to their mutual

inactivation by second-order kinetics with rate k.. S induces expression of D. N, D, and S all

also undergo first-order degradation. The parameters governing the system are:

an,ap Constitutive production rates of N and D
ol First-order degradation rate of N and D
Ys First-order degradation rate of S
ki, ke Strength of trans- and cis-interactions between N and D, respectively

Bsp, ksp, n

Maximum magnitude, affinity, and cooperativity of the increasing Hill

function of S that contributes to D expression

Denotes the average of D in the cells j that are neighbors of cell 4

Denotes the average of NV in the cells j that are neighbors of cell i

Every simulation in this paper is governed by the following equations:

dN; 1 1

= —vN; — —N;D; — —N; (D).
ar N T T oy N (D3
dD; ST 1 1
— = —— —~vD;, — —N;D; — — (N;), D;
7 ap JrﬂSDng T gn Y o k, (N;);
ds; 1
= —N;(D;), — ;
dt kt < ]>z FYSS

In the study of single-cell response to trans ligand Dy, we set (D), = Dy and (N;), = 0.

%

The simulations of gradient formation, front propagation, and pulse propagation all used these

same equations with different parameters and boundary conditions. Computation of the homoge-

neous steady states was achieved by obtaining the intersection of the system’s nullclines.



140

All computations were coded and executed in Matlab 2010a (The Mathworks) using the odel5s

solver for differential equations.
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Chapter 4

Engineering and characterization
of a synthetic Notch
signaling-mediated lateral
induction feedback circuit in cell
culture

This section contains my unpublished experimental work showing that lateral induction coupled
with positive feedback on Notch signaling drives a ligand-dependent transition between signaling

states.

Letter

Spatial pattern formation is an essential element of multicellular development. As a coordinated
process among groups of cells, the generation of spatial patterns requires some mechanism of intercel-
lular communication. A small number of signaling pathways are known to be employed in patterning
processes, including juxtacrine signaling via Notch signaling [1]. In canonical mammalian Notch sig-
naling, a member of the Notch family of receptors (Notchl-4) is bound by a member of the Delta
or Jagged (Delta-likel/3-4, Jagged1-2) families of membrane-bound ligands. This interaction occurs
in one of two orientations: in cis on the surface of the same cell, or in trans between molecules
on the surfaces of neighboring cells [2]. Binding of Notch with ligand on the same cell surface is
not productive (cis-inhibition), while by contrast binding with ligand on a neighboring cell leads to

signal transduction by cleavage and nuclear translocation of the Notch intracellular domain (¢rans-
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activation) (Fig. la). The Notch signaling system integrates these positive and negative inputs in a
manner that we have previously reported is consistent with strong mutual cis-inactivation of Notch
and Delta [3]. Models of mutual inactivation in the context of boundary formation and lateral inhi-
bition patterning processes have suggested potential roles in affecting developmental patterning [4].
Studies in model organisms have obtained evidence for the developmental relevance of cis-inhibition
in natural contexts [5,6].

The outcome of a spatial patterning process depends on the combination of signaling system
properties and downstream regulatory network function. For instance, in the canonical example of
pattern formation using the Notch system, lateral inhibition, downstream of Notch signaling lies
some mechanism by which Delta is downregulated [7]. Processes in which Notch signaling has the
opposite downstream effect, increasing the level of ligand rather than decreasing it, are referred
to as lateral induction [8]. Notch-mediated lateral induction has been implicated in a number
of mammalian developmental contexts. In the Gallus inner ear, lateral induction between Notch
and Jaggedl contributes to the formation of prosensory patches limiting the domain within which
sensory organs may arise [9,10]. The layers of smooth muscle in the walls of certain arteries are
specified by lateral induction between Notch and Jaggedl [11,12]. The lateral induction feedback
models proposed in these contexts have not incorporated the potential role of cis-inhibition in their
function.

We developed an in vitro model of lateral induction by creating a mammalian cell line imple-
menting a synthetic Notch-Delta lateral induction feedback circuit, along with fluorescent readouts of
both Notch signaling and Delta levels to characterize its behavior (Fig. 1) (a similar effort has been
published in [13]). The parental cell line was Chinese Hamster Ovary K1 (CHO-K1), which we have
previously established expresses negligible levels of Notch receptors and ligands but is nonetheless
capable of supporting Notch signaling if the receptor is supplied exogeneously [3]. Into the parent
line we stably transfected a diverted form of the Notch receptor consisting of the extracellular and
transmembrane domains of human Notchl fused to a minimal version of the yeast Gal4 transcrip-

tional activator (Galdesn) [14] constitutively expressed under the pEF-1a promoter [15], generating
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the receptor line. This replacement of the normal Notch intracellular domain diverts pathway activa-
tion away from whatever feedbacks may normally occur in response to Notch signaling, ensuring that
our obervations are not confounded by endogenous regulation that may be cell type-specific. To the
receptor line we stably transfected a Gal4-inducible (UAS) bicistronic construct (Fig. 1b) consisting
of a rat Deltal-mCherry fusion (Delta-mCh) and a histone-tagged Citrine (H2B-Citrine) separated
by the T2A sequence. The 2A family of sequences, taken from viruses, are processed normally by
the ribosome and then automatically but the developing peptide then automatically cleaves at the
2A sequence [16]. The T2A sequence in particular has seen frequent use in the literature to express
multiple proteins from a single transcript [17-19]. This construct therefore simultaneously provides a
nuclear-localized fluorescent readout of integrated Notch signal activity due to the stability of H2B-
Citrine and implements the basic “lateral induction” feedback interaction (Fig. 1b). We also further
modified the feedback circuit architecture by adding a positive feedback element, implemented as a

construct expressing Gald under UAS control, generating the “amplifier” line (Fig. 4a).

Results

The fundamental behavior of a lateral induction feedback is upregulation of cis ligand upon stimula-
tion by t¢rans ligand (Fig. 1b). Because activation of the Notch receptor requires a force exerted on
the molecule [20], ligand in trans cannot merely be provided in the medium but must be adsorbed
onto the cell culture surface. Following a standard protocol for trans stimulation we incubated 24-
well cell culture plates with a solution containing a protein fusion of the extracellular domain of rat
DIl and immunoglobulin-G (together referred to as Dpiate or Dy). After incubation we passaged
lateral induction cells to treated (D,+) and untreated (D,—) culture surfaces in media contain-
ing N-[N-(3,5-difluorophenacetyl)-L-alanyl]- S-phenylglycine t-butyl ester (DAPT), which inhibits
Notch signaling by blocking ~-secretase cleavage of the receptor. We allowed cells to settle for 24
hours, after which the inhibitor was washed out with fresh media. Forty-eight hours later the cells
were trypsinized, and we measured the fluorescent readouts of Notch signaling (Citrine) and cis

ligand expression (mCherry) by FACS analysis. As desired, plate-bound ligand increased both Cit-
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rine and mCherry fluorescence, indicating ligand-dependent Notch signal activation and induction
of Delta expression.

If cis-inhibition of Notch by Delta is strong, we expect that the same amount of plate-bound
Delta should lead to less Notch signaling in lateral induction cells than in reporter cells. This concept
is visualized in FIG 2a, where we see that the additional cis Delta expressed in lateral induction cells
should inactivate surface Notch and decrease the cells’ overall sensitivity to Delta in trans relative
to reporter cells that never express cis Delta. To make this comparison we used the plate-bound
Delta trans-activation assay to stimulate lateral induction and reporter cells with the same amount
of trans ligand for the same duration of time. Our data are consistent with strong cis-inhibition,
as identical stimuluation by Dyate drives reporter cells to higher levels of Citrine expression than
lateral induction cells (approximately four-fold, FIG 2b).

In addition to this static population-level behavior we also predict a single-cell dynamical signa-
ture of cis-inhibition (Fig. 3a). At the initial time when the Notch signaling inhibitor is removed,
the cis ligand levels of both lateral induction and reporter cells are both near zero. Thus, the instan-
taneous level of Notch signaling, provided by the rate at which Citrine fluorescence levels increase,
should be comparable in both lines at early times. However, as time passes lateral induction cells
accumlate more cis ligand the rate of Notch signaling in those cells should decrease. By contrast,
pure reporter cells lacking the positive feedback should remain devoid of cis ligand and thus signaling
should continue at close to the initial rate (Fig. 3a).

To test for this dynamical signature we employed time-lapse fluorescence microscopy of lateral
induction and reporter cells exposed to plate-bound Delta, using the protocol described in our
previous work quantifying the Notch signaling input/output relationship [Nature REF]. The data
yielded the dynamics as predicted in Fig. 3a. Immediately after washout of the inhibitor the median
Citrine slope of lateral induction cells reached its maximum, after which it diminished. Reporter
cells quickly reached and maintained a high level of Notch signaling throughout (Fig. 3b). The
exaggerated difference between the initial Citrine fluorescence slopes of the lateral induction and

reporter cell lines could be explained by the temporal resolution of our time-lapse imaging, which
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would integrate over time during which the lateral induction cells are accumulating cis Delta and
therefore underestimate the true initial instantaneous Notch signaling level in those cells.

We then asked how modifying the lateral induction circuit architecture by adding a positive
feedback element (UAS-Gal, an “amplifier”, Fig. 4a) would affect the behavior of the system.
We obtained several stably integrated clones incorporating the amplifier that displayed a bimodal
distribution of Citrine fluorescence both with and without ¢rans Delta stimulation (FIG 4b). Cells
in the less fluorescent population are in a low-signaling state (referred to simply as “low”), with
both little Citrine indiciating low levels of Notch signal and low mCherry indicating low levels of cis
Delta. Cells in the more fluorescent population are in a high-signaling state (“high”), with greater
levels of Citrine indicating a combination of Notch signal and positive feedback from the amplifier
and high mCherry indicating high levels of cis Delta.

Because the behavior we seek is a maximally trans ligand-dependent transition to a high-signaling
state, we assessed the bimodal candidate lines on a quantitative standard of this property. We
quantified the extent of ligand-dependent and ligand-independent transitions to the high-signaling
state by plotting the fraction of high-signal cells in populations exposed to plate-bound trans Delta
versus the fraction of high-signal cells in unstimulated populations (Fig. 4c). From these we chose
the clone closest to the ideal behavior, which would be the top-left corner of Fig. 4c in which no cells
spontaneously generate high levels of Notch signaling (zero on the z-axis) but all cells are driven
into the high Notch signaling state when exposed to plate-bound Delta (one on the y-axis).

We probed the behavior of the chosen amplifier clone by obtaining a FACS timecourse of its
fluorescent response to plate-bound Delta over 100 hours. Our data indicate that under both con-
ditions with/without plate-bound Delta the fraction of cells in the high-signaling state plateaus at
approximately 50/70 hours, respectively, at a higher final level with plate-bound Delta than without
(85% vs 50%, Fig 5b). We suggest that the high-signal cells in the unstimulated condition represent
a sequential combination of (i) sporadic spontaneous transitions to the high state due to leakiness in
the Notch system followed by (ii) trans signaling from the spontaneously high cells to their neigh-

bors. A striking feature of the data, the delay in the unstimulated timecourse (which only begins
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to appreciably increase between 24 and 48 hours by contrast with the stimulated timecourse which
begins rising within the first 24 hours), is consistent with this suggestion. Turnoff dynamics from the
maximally-induced high population under Notch signaling-inhibited conditions (DAPT treatment)
are slow, with very little change in the fraction of cells in the high state over 48 hours, approximate
equality between high- and low-state cells at 72 hours, and recovery of a fully-off population at 120
hours.

Finally, in order to claim a lateral induction process with the potential to spatially propagate a
signal, we must establish that the high state of these amplifier cells is capable of sending signal to
neighboring cells. To achieve this we co-cultured pre-induced (by plate-bound Delta) amplifier cells
at low density among a high density of reporter cells, and after 48 hours of growth in Notch signaling-
permissive conditions we imaged the culture (Fig. 6a). Reporter cells are distinguishable from
amplifier cells by constitutive Cerulean fluorescence. The pre-induced amplifier cells are visualized
with bright green (Citrine) nuclei and punctate red cytosol (Delta-mCherry). Reporter cells in which
Notch signaling has been induced appear with cyan nuclei, as a combination of the constitutive
H2B-Cerulean and Notch signaling-driven H2B-Citrine. We appreciated visually that reporter cells
in proximity to patches of pre-induced amplifier cells display high levels of Notch signaling, while
reporter cells far from pre-induced amplifier cells display very little. We quantified this relationship
(Fig. 6b), and found that only within two cell diameters of an mCherry-positive high-state amplifier
cell was there any reporter expression of Citrine above background. This constitutes strong evidence
that the amplifier cells in the high state have produced Delta that is capable of activating Notch in

their neighbors, the prerequisite for spatial propagation of Notch signaling by lateral induction.
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Figure 1: System for analyzing Notch signaling-mediated lateral induction (a) Notch is a trans-
membrane receptor, which upon trans-activation by ligand (upper arrow, green circle) releases its
intracellular domain (replaced here with a minimal Gal4, purple) to the nucleus. Notch also in-
teracts with ligand cell-autonomously, leading to mutual cis-inactivation (red circle/cross). (b) We
implement synthetic Notch-mediated lateral induction in a genetically-engineered CHO-K1 cell line.
The lateral induction cell line stably expresses a diverted form of Notch (the extracellular domain
of human NOTCHI1 fused to a minimal transcriptional activator Galdesn) constitutively expressed
under the control of the pEF1-a promoter. Activation of the Notch receptor induces expression
from a stably-integrated UAS-driven bicistronic construct containing (i) a stable nuclear-localized
fluorescent reporter of Notch signaling (histone 2B-Citrine) and (ii) a fusion of the Notch ligand
rat Delta-like 1 to mCherry (Delta-mCherry), separated by the T2A sequence to allow coordinated
expression of the two proteins from a single mRNA transcript.
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Figure 2: Clis-inhibition between Notch and Delta limits the magnitude of signaling in lateral in-
duction cells. (a) Schematic comparision of a lateral induction cell and a feedback-free reporter
cell illustrates the predicted limitation of Notch signaling due to the lateral induction feedback and
cis-inhibition. In a lateral induction cell line (upper) stimulated with a specific quantity of extracel-
lular ligand, the feedback generates inhibitory intracellular cis-Delta which decreases the quantity
of Notch receptor available to transduce signal. In the absence of this feedback, the simple Notch
reporter line (lower) has all of its Notch available to participate in productive signaling, and thus
when stimulated by the same quantity of extracellular Delta should generate a response of greater
magnitude (stronger green nucleus). (b) Population-level measurement of Notch signaling confirms
the expected relationship between the magnitude of Notch signaling in a lateral induction line and
feedback-free reporter cells. The inserted bar chart compares the population Citrine fluorescence
medians of lateral induction and reporter cell lines with (D;f) and without (D,’) trans Delta
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Figure 3: Dynamics of Notch signaling in the lateral induction cell line are consistent with cis-

inhibition.

(a) At the initial time when Notch signaling is allowed to commence, both lateral

induction and reporter cells should express no cis ligand and therefore the level of Notch signaling
activity (the rate of fluorescence increase) in both lines should be comparable. As signaling continues
the lateral induction cells accumulate cis ligand which decreases the level of available receptor, so
the Notch signaling activity diminishes. In the absence of feedback, the reporter cell Notch signaling
activity remains near the high initial level. (b) Notch signal dynamics of lateral induction cells
obtained by time-lapse microscopy are consistent with the expectation of Fig. 3a, with a transient
high level of Notch signaling after inhibitor removal followed by a decrease to a lower level of Notch
signaling. Reporter cells lacking the feedback do not show this decrease.
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Figure 4: Addition of a positive-feedback amplifier to the regulatory circuit leads to a bimodality in
Notch signaling levels. (a) We added a positive-feedback amplifier to the lateral induction circuit,
consisting of UAS driving expression of the minimal Gal4. As diagrammed, in these cells Notch
signaling not only drives the Citrine reporter and Delta-mCherry cis ligand but also activates the
expression of Gal, which activates its own expression in a positive feedback loop. (b) Several clones
stably integrating the amplifier construct demonstrated a ligand-dependent transition between low-
and high-signaling states. After 48 hours of growth in Notch signaling-permissive conditions, both
with (green) and without (black) exposure to trans ligand, FACS data show that the population
of cells displays a bimodal distribution of Citrine fluorescence. (c) For each of these clones we plot
the fraction of cells in the high Citrine state with trans ligand stimulation versus the fraction of
cells in the high Citrine state without trans ligand stimulation. Points representing cell lines at the
top-right of the plot report high levels of Notch signaling plus feedback regardless of trans ligand,
indicating undersirable constitutive activation of the positive feedback system. Cell lines closer to
the top-left of the plot are those with fewer transitions to the high-Citrine state in the absence of
trans ligand, and more transitions to the high-Citrine state when stimulated by trans ligand.
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Figure 5: Timecourse of amplifier cell line response to trans ligand (a) FACS analysis of amplifier
cell populations exposed to trans ligand or untreated control surfaces reveals the dynamics of ligand-
dependent and ligand-dependent transitions to the high-signal state. Cells were initially prepared
in a homogeneously low-Citrine state by growth for several generations in Notch signaling-inhibited
(DAPT positive) conditions. At various times after removal of DAPT inhibition the distribution of
fluorescence shifts toward the high-Citrine state, but at a higher rate when stimulated with trans
ligand than without. (b) Timecourses of transitions to the high-Citrine state with and without cis
ligand stimulation. (c¢) Timecourse of transition away from the high-Citrine state when a maximally
trans-activated population is treated with the Notch inibitor DAPT.
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Figure 6: The high-Citrine/high-ligand state of the amplifier cell line is capable of activating Notch
in neighboring cells. (a) Composite fluorescence and phase microscopy image of a co-culture with
pre-induced amplifier cells (green nuclei with red cytosol) and Notch signaling reporter cells (blue
nuclei), allowed to grow for 48 hours in Notch signaling-permissive conditions. Reporter cells that
have high levels of Notch activity appear cyan, as the combination of Cerulean and Citrine. Only
(b) Profile of
Citrine fluorescence as a function of distance from the nearest patch of pre-induced amplifier cells.
Localization of Citrine fluorescence above background to regions within one or two cell diameters of
pre-induced amplifier cell pathches indicates that surface ligand on the pre-induced amplifier cells
is effectively activating Notch on neighboring cells.

reporter cells near patches of pre-induced amplifier cells appear to be activated.
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Methods

The genetic constructs used in this work were created by standard molecular biology techniques. The
lateral induction construct, pEV-UAS-H2B-Citrine-T2A-Delta-mCherry, was generated by combin-
ing (i) a PCR fragment of the TO-Delta-mCherry construct described in [Nature REF] including
the Delta-mCherry ORF with a 3’ T2A sequence replacing the start codon, and (ii) a restriction
digest of the pEV-UAS-H2B-Citrine construct also described in [3]. A second step replaced the
parent construct’s Zeocin resistance cassette with a constitutively-expressed Hygromycin resistance
also taken from TO-Delta-mCherry. The amplifier construct, pEV-UAS-Galdesn, was generated
by combining (i) a PCR fragment of the pcDNA4-hNlecd-Galdesn construct described in [3] with
(ii) a restriction digest of the pEV-UAS-H2B-Citrine construct to remove the H2B-Citrine ORF.
A second step replaced the Zeocin resistance cassette with a constitutively-expressed Puromycin
resistance from the Invitrogen pExchange system.

Protocols for generating cell lines with stably integrated genetic constructs were performed as
described in [3]. All lines in this work descended from the pEF-Notch-Gal line, provided by Lauren
LeBon and selected for high levels of available surface Notch receptor, which was resistant to the
selection markers Blasticidin at 10 ug mL ™! and Geneticin at 600 pug mL~'. The lateral induction
line was generated by stably transfecting pEF-Notch-Gal with the UAS-H2B-Citrine-T2A-Delta-
mCherry construct, selecting with 500 g mL~! Hygromycin, and isolating by FACS single cells
most highly induced in Citrine and mCherry on transient trasfection with a constitutive activator of
UAS. At the same time a pure reporter line was generated from the same pEF-Notch-Gal background
by transfection with pEV-UAS-H2B-Citrine modified to express a Hygromycin resistance maker.
The lateral induction line was further modified to the amplifier line by transfecting the UAS-Gal
construct, selecting in 3 pug mL~! Puromycin, and screening several clones isolated by limiting
dilution for Citrine and mCherry activation with and without trans ligand (plate-bound Delta, D))
stimulation.

Imaging and flow cytometry data were obtained as described in [3], with the exception of substi-

tuting an LED light source (X-Cite XLED1, Lumen Dynamics) for the fluorescent source used in the
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reference. Image analysis was executed in MATLAB R2012a (Mathworks) with a pipeline including
nuclear segmentation based on fluorescence intensity and edge detection and cell tracking between
frames using the Jonker-Volgenant algorithm [21] for the Linear Assignment Problem as coded by

[22].
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Chapter 5

Conclusion

We have succeeded in using the path toward synthetic reconstitution of developmental spatial pattern
to elucidate the operation of natural systems. In the first place, we quantified the relationship
between signaling through Notchl and the combination of activating trans DII1 and inhibitory cis
DIl1. We achieved this by time-lapse microscopy to measure fluorescent readouts of Notch signaling
and levels of cis DII1. The finding, that by contrast with gently graded trans activation the cis
interaction varies sharply with the quantity of cis ligand, led us to conclude that cis-inhibition is
strong and mutually inhibitory. We further came to understand that this property of the signaling
system leads it to drive cells into exclusive signal ‘sending’ or ‘receiving’ states and thus function
effectively as an amplifier of small differences on short lengthscales, shedding light on why it might
be involved in certain types of developmental pattern and not in others.

Based on this finding, we see that the signaling system does not merely serve as a conduit for
transmitting information but in itself encodes a type of logic that shapes the message. Thus, in
order to have any reasonable expectation of anticipating the outcome of a given feedback circuit
downstream of Notch signaling we must consider not only the feedback properties but how they
interact with, or are interpreted by, the signaling system. Due to a lack of awareness of cis inhibition’s
nature, previous theoretical studies have been incomplete in this regard. Our modeling allowed us
to arrive at a number of conclusions regarding the potential role of Notch in several developmental
patterns. By showing that the Notch system without feedback converts a shallow gradient of ligand

expression into a sharply-defined band of signal activity, we have suggested an explanation for the
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ratiometric dependence on Notch and Delta dosages in the sharpening of Drosophila wing vein
boundaries. Additionally, we discovered that mutual cis inhibition relaxes constraints on feedbacks
driving a lateral inhibition pattern, and allows an especially simple feedback of Notch signaling
upregulating Notch expression to generate lateral inhibition patterning. Lastly, in modeling a lateral
induction feedback downstream of Notch signaling, we have proposed a possible mechanism for
generating uniform spatially-limited populations of cells and identified a spatiotemporal pattern
that may be experimentally accessible because of the cis inhibition of receptor and ligand.

These insights simultaneously provide guidance for synthetic reconstitution attempts that might
use them to make choices in feedback architecture, and to researchers in model systems for whom
the properties of regulation our theoretical work finds potentially influential in spatial patterning
can serve as motivation for specific experiments. Along the lines of the former, we have implemented
a pattern-forming feedback downstream of the Notch signaling system in mammalian cell culture:
upregulation of Delta by Notch signaling, referred to as lateral induction. We were able to conclude
that the dynamics of signaling in lateral induction cells are consistent with the negative influence
of cis inhibition, limiting the amount of ligand produced. The addition of an amplifier generated
a cell line with three crucial properties: (i) bimodality in the amount of ligand, (ii) transitions to
the high-ligand state induced by exposure to trans ligand, and (iii) a high-ligand state that sends
signal in trans to neighboring cells. Taken together, we conclude that this cell line incorporating
both lateral induction and a positive feedback amplifier is capable of spatially propagating a Notch
signal in cell culture.

Altogether, we have quantitatively characterized a widely-used signaling system, elucidated an
element of its signal transduction mechanism, and computed the expected effects of the mechanism
in developmentally-relevant contexts. Using this system we have implemented a lateral induction
feedback, and by adding an intracellular positive feedback to the circuit generated a cell line that

by our characterization is capable of spatially propagating Notch signal.
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Future directions

The Notch system is considerably more complex than a single pair of receptor and ligand. Specific
combinations of the four mammalian Notch family members and the five canonical mammalian DSL
ligands are used in any given developmental context — for instance, the lateral induction processes
around the artery to specify smooth muscle [1] and in the inner ear to define prosensory patches [2] are
both mediated by the Jaggedl ligand. With the knowledge that different Notch/DSL receptor/ligand
pairs have different affinities for one another, both in cis and in trans, and the indications from our
modeling that those parameters are important determinants of pattern outcomes, it would be a
logical extension of this program to expand the repertoire of Notch receptors and DSL ligands. In a
similar vein, modulators of the Notch signaling pathway can also be used to tune system parameters
to access different patterning regimes.

Beyond the Notch system, there is work ongoing in the lab on the study and potential uses of
other signaling systems in other patterning processes. In light of our findings that the Notch system
is in a sense optimized for certain type of pattern by its particular mechanism (juxtacrine, with
mutual cis inactivation), one could ask if other signaling systems are similarly suited to the functions
they perform. Furthermore, while in this work we have implemented intracellular feedback circuits
exclusively through transcriptional regulation, utilizing other modes of regulation in the feedback
may alter the system dynamics and permit another level of control over the patterning outcome. It
would be very interesting to see to what extent regulatory mechanisms that operate exclusively or
predominantly in one type of organism might translate to others, and what kinds of processes are
enabled by those combinations.

The potential for efficiently manipulating mammalian cells in culture with arbitrary constructs
encoding any of the diverse regulatory mechanisms known to occur, or yet to be discovered, and using
those to achieve desired patterning outcomes is tremendously exciting for the opportunities it will
allow. In basic science it will provide us with fundamental insights into understanding how natural
systems operate, by allowing us to probe patterning behaviors in more experimentally accessible

conditions with a greater degree of control. In the longer term, the insights we gain can potentially
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lead to translational applications where generating spatially-structured populations of cells might

be clinically applied in efforts such as artificial organ generation.

References

1. Manderfield, L.J. et al. Notch activation of Jaggedl contributes to the assembly of the arterial

wall. Circulation 125, 314-323 (2012).

2. Hartman, B.H., Reh, T.A. & Bermingham-McDonogh, O. Notch signaling specifies prosensory
domains via lateral induction in the developing mammalian inner ear. PNAS 107, 15792-15797

(2010).



