87 research outputs found

    Quantum phase transitions in photonic cavities with two-level systems

    Full text link
    Systems of coupled photonic cavities have been predicted to exhibit quantum phase transitions by analogy with the Hubbard model. To this end, we have studied topologies of few (up to six) photonic cavities each containing a single two-level system. Quantum phase space diagrams are produced for these systems, and compared to mean-field results. We also consider finite effective temperature, and compare this to the notion of disorder. We find the extent of the Mott lobes shrink analogously to the conventional Bose-Hubbard model.Comment: 11 pages, 11 figures, updated typo

    Critical behavior of systems with long-range interaction in restricted geometry

    Full text link
    The present review is devoted to the problems of finite-size scaling due to the presence of long-range interaction decaying at large distance as 1/rd+σ1/r^{d+\sigma}, σ>0\sigma>0. The attention is focused mainly on the renormalization group results in the framework of O(n){\cal O}(n) ϕ4\phi^{4} - theory for systems with fully finite (block) geometry under periodic boundary conditions. Some bulk critical properties and Monte Carlo results also are reviewed. The role of the cutoff effects as well their relation with those originating from the long-range interaction is also discussed. Special attention is paid to the description of the adequate mathematical technique that allows to treat the long-range and short-range interactions on equal ground. The review closes with short discussion of some open problems.Comment: New figures are added. Now 17 pages including 4 figures. Accepted for publication in Modren Physics Letter

    Static and dynamical quantum correlations in phases of an alternating field XY model

    Full text link
    We investigate the static and dynamical patterns of entanglement in an anisotropic XY model with an alternating transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a lattice, a system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases, the model possesses a dimer phase which is not present in the transverse XY model. At zero temperature, we find that the first derivative of bipartite entanglement can detect all the three phases. We analytically show that the model has a "factorization line" on the plane of system parameters, in which the zero temperature state is separable. Along with investigating the effect of temperature on entanglement in a phase plane, we also report a non-monotonic behavior of entanglement with respect to temperature in the anti-ferromagnetic and paramagnetic phases, which is surprisingly absent in the dimer phase. Since the time dynamics of entanglement in a realizable physical system plays an important role in quantum information processing tasks, the evolutions of entanglement at small as well as large time are examined. Consideration of large time behavior of entanglement helps us to prove that in this model, entanglement is always ergodic. We observe that other quantum correlation measures can qualitatively show similar features in zero and finite temperatures. However, unlike nearest-neighbor entanglement, the nearest-neighbor information theoretic measures can be both ergodic as well as non-ergodic, depending on the system parameters.Comment: 20 Pages, 13 Figures, 2 Tables, Published versio

    Endoscopic Management of Foreign Bodies in the Gastrointestinal Tract: A Review of the Literature

    Get PDF
    Foreign body ingestion is a common diagnosis that presents in emergency departments throughout the world. Distinct foreign bodies predispose to particular locations of impaction in the gastrointestinal tract, commonly meat boluses in the esophagus above a preexisting esophageal stricture or ring in adults and coins in children. Several other groups are at high risk of foreign body impaction, mentally handicapped individuals or those with psychiatric illness, abusers of drugs or alcohol, and the geriatric population. Patients with foreign body ingestion typically present with odynophagia, dysphagia, sensation of having an object stuck, chest pain, and nausea/vomiting. The majority of foreign bodies pass through the digestive system spontaneously without causing any harm, symptoms, or necessitating any further intervention. A well-documented clinical history and thorough physical exam is critical in making the diagnosis, if additional modalities are needed, a CT scan and diagnostic endoscopy are generally the preferred modalities. Various tools can be used to remove foreign bodies, and endoscopic treatment is safe and effective if performed by a skilled endoscopist

    Defect production due to quenching through a multicritical point

    Full text link
    We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/τt/\tau, where τ\tau is the characteristic time scale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (nn) in the final state is not necessarily given by the Kibble-Zurek scaling form n1/τdν/(zν+1)n \sim 1/\tau^{d \nu/(z \nu +1)}, where dd is the spatial dimension, and ν\nu and zz are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n1/τd/(2z2)n \sim 1/\tau^{d/(2z_2)}, where the exponent z2z_2 determines the behavior of the off-diagonal term of the 2×22 \times 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.Comment: 4 pages, 2 figures, updated references and added one figur

    Quantum phases and phase transitions of Mott insulators

    Full text link
    This article contains a theoretical overview of the physical properties of antiferromagnetic Mott insulators in spatial dimensions greater than one. Many such materials have been experimentally studied in the past decade and a half, and we make contact with these studies. The simplest class of Mott insulators have an even number of S=1/2 spins per unit cell, and these can be described with quantitative accuracy by the bond operator method: we discuss their spin gap and magnetically ordered states, and the transitions between them driven by pressure or an applied magnetic field. The case of an odd number of S=1/2 spins per unit cell is more subtle: here the spin gap state can spontaneously develop bond order (so the ground state again has an even number of S=1/2 spins per unit cell), and/or acquire topological order and fractionalized excitations. We describe the conditions under which such spin gap states can form, and survey recent theories (T. Senthil et al., cond-mat/0312617) of the quantum phase transitions among these states and magnetically ordered states. We describe the breakdown of the Landau-Ginzburg-Wilson paradigm at these quantum critical points, accompanied by the appearance of emergent gauge excitations.Comment: 51 pages, 13 figure

    Spin Liquid Phases in 2D Frustrated XY Model

    Full text link
    In this paper we consider the J1J2J3J_1-J_2-J_3 classical and quantum 2D XY model. Spin wave calculations show that a spin liquid phase still exists in the quantum case as for Heisenberg models. We formulate a semiclassical approach of these models based on spin wave action and use a variational method to study the role played by vortices. Liquid and crystal phases of vortex could emerge in this description. These phases seem to be directly correlated with the spin liquid one and to its crystalline interpretation.Comment: 16 pages, Latex, 4 figures. To be published in Phys. Rev.

    The Utility of Endoscopic Ultrasound in Patients with Isolated Elevations in Serum Amylase and/or Lipase

    Get PDF
    Background/Aims The aim of this study was to describe the diagnostic yield of endoscopic ultrasound (EUS) in patients with isolated elevated levels of amylase and/or lipase. Methods A retrospective chart review was conducted at a large academic medical center from 2000 to 2016. Patients were selected based on having elevated amylase, lipase, or both, but without a diagnosis of pancreatitis or known pancreatobiliary disease. Patients were excluded if they had abnormal liver function tests or abnormal imaging of the pancreas. Results Of 299 EUS procedures performed, 38 met inclusion criteria. Symptoms were present in 31 patients, most frequently abdominal pain (87%). In 20 patients (53%), initial EUS most commonly found chronic pancreatitis (n=7; 18%), sludge (5; 13%), or new diagnosis of pancreas divisum (3; 8%). In the asymptomatic patients (7), 3 had a finding on EUS, most importantly sludge (2), stone (1), and pancreas divisum (1). No patients were diagnosed with a mass or pancreatic cyst. During the follow up period, 6 patients (22%) had cholecystectomy. Conclusions In our study of patients with isolated elevations in amylase and/or lipase without acute pancreatitis who underwent EUS, approximately 50% had a pancreatobiliary finding, most commonly chronic pancreatitis or biliary sludge

    Path dependent scaling of geometric phase near a quantum multi-critical point

    Full text link
    We study the geometric phase of the ground state in a one-dimensional transverse XY spin chain in the vicinity of a quantum multi-critical point. We approach the multi-critical point along different paths and estimate the geometric phase by applying a rotation in all spins about z-axis by an angle η\eta. Although the geometric phase itself vanishes at the multi-critical point, the derivative with respect to the anisotropy parameter of the model shows peaks at different points on the ferromagnetic side close to it where the energy gap is a local minimum; we call these points `quasi-critical'. The value of the derivative at any quasi-critical point scales with the system size in a power-law fashion with the exponent varying continuously with the parameter α\alpha that defines a path, upto a critical value α=αc=2\alpha = \alpha_{c}=2. For α>αc\alpha > \alpha_{c}, or on the paramagnetic side no such peak is observed. Numerically obtained results are in perfect agreement with analytical predictions.Comment: 5 pages, 6 figure

    Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures

    Get PDF
    We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, {\it composite fermions}. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, "dirty" superfluids, disordered metallic phases, and phases involving quantum percolation.Comment: 29 pages and 11 figure
    corecore