32 research outputs found
Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts
New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future
EXAFS Characterization of DendrimerâDerived Pt/ÎłâAl\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e
The various steps involved in the preparation of a Pt/ÎłâAl2O3 material using hydroxylâterminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, indicating the complexation of Pt with the dendrimer. This process was accompanied by a transfer of the electron density from the dendrimer to Pt, indicating that the former plays the role of a ligand. Following treatment of the H2PtCl6/G4OH and K2PtCl4/G4OH composites with NaBH4, no substantial changes were detecteded in the electronic or coordination environment of Pt, and no formation of metal nanoparticles was observed. However, when the reduction treatment was performed with H2, the formation of extremely small Pt clusters incorporating no more than 4 Pt atoms was observed. These Pt species remained strongly bonded to the dendrimer and their nuclearity depends on the length of the H2 treatment. Formation of Pt nanoparticles with an average diameter of approximately 10 Ă
was finally observed after the deposition of H2PtCl6/G4OH on ÎłâAl2O3 and drying, suggesting that their formation may be related to the collapse of the dendrimer structure. The Pt nanoparticles formed appear to have high mobility, since subsequent thermal treatment in O2/H2 led to further sintering
2001 AAPP Monograph Series
The African American Professors Program (AAPP) at the University of South Carolina is pleased to produce this premier edition of its annual monograph series. It is fitting that the program assume a leadership role in promoting scholarly products that will prove to be useful in future research efforts by faculty and students in higher education.
Scholars who have contributed manuscripts for this monograph are to be commended for adding this additional responsibility to their academic workload. Writing across disciplines adds to the intellectual diversity of these papers. From neophytes, relatively speaking, to an array of very experienced individuals, the chapters have been researched and, comprehensively, written.
AAPP was created in 1997 under the leadership of Drs. Aretha B. Pigford and Leonard 0. Pellicer, Department of Educational Leadership and Policies. It was designed to address the underrepresentation of African American professors on college and university campuses. Its mission is to expand the pool of these professors in critical academic and research areas. Sponsored by the University of South Carolina, the W. K. Kellogg Foundation, and the South Carolina General Assembly, the program recruits students with bachelor\u27s, master\u27s, and doctoral degrees for disciplines in which African Americans, currently, are underrepresented.
An important component of the program is the mentoring experience that is provided. Each student is assigned to a mentor professor who guides the student through a selected academic program and provides various learning experiences. When possible, the mentor serves as chair of the student\u27s doctoral committee. The mentor, also, provides opportunities for the student to team teach, conduct research, and co-author publications. Students have opportunities to attend committee, faculty, and professional meetings, as well as engage in a range of activities that characterize professional life in academia. Scholars enrolled in the program, also, are involved in programmatic and institutional workshops, independent research, and program development.
The establishment or genesis of this monograph series is seen as responding to an opportunity to be sensitive to an academic expectation of graduates as they pursue career placement and, also, one that allows for the dissemination of AAPP products to a broader community. We hope that you, likewise, will read this premier monograph of the African American Professors Program with enthusiasm or enlightenment.
John McFadden, Ph.D.
The Benjamin Elijah Mays Professor
Director, African American Professors Program
University of South Carolinahttps://scholarcommons.sc.edu/mcfadden_monographs/1005/thumbnail.jp
Aerosol absorption profiling from the synergy of lidar and sun-photometry : The ACTRIS-2 campaigns in Germany, Greece and Cyprus
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.Peer reviewe
Effects of different lower-limb sensory stimulation strategies on postural regulation â A systematic review and meta-analysis
Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedgesâ g) standardized mean differences (SMD) = 0.31 â 0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition â eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68 â 0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual need
Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017
For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET
stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30
ground-based lidars.
The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern
Scandinavia over whole western and central Europe to the Mediterranean regions.
Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires
in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August
caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017.
Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017
during the peak of this event.
The stratospheric smoke layers reached extinction coefficient values of more than 600 Mmâ1 at 532 nm, a factor
of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive
optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical
particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of
the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric
smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible
to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements.
Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between
70-90 sr were measured at higher wavelengths.
In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August
at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean
(Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in
the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed
until the end of August within Europe.
An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development
of these layers as well as their geometrical and optical properties will be presented