36 research outputs found

    Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution

    Full text link
    Optical cavities provide high sensitivity to dispersion since their resonance frequencies depend on the index of refraction. We present a direct, broadband, and accurate measurement of the modes of a high finesse cavity using an optical frequency comb and a mechanical Fourier transform spectrometer with a kHz-level resolution. We characterize 16000 cavity modes spanning 16 THz of bandwidth in terms of center frequency, linewidth, and amplitude. We retrieve the group delay dispersion of the cavity mirror coatings and pure N2{_2} with 0.1 fs2{^2} precision and 1 fs2{^2} accuracy, as well as the refractivity of the 3{\nu}1+{\nu}3 absorption band of CO2{_2} with 5 x 10−12{^{-12}} precision. This opens up for broadband refractive index metrology and calibration-free spectroscopy of entire molecular bands

    Time-resolved mid-infrared dual-comb spectroscopy

    Full text link
    Dual-comb spectroscopy can provide broad spectral bandwidth and high spectral resolution in a short acquisition time, enabling time-resolved measurements. Specifically, spectroscopy in the mid-infrared wavelength range is of particular interest, since most of the molecules have their strongest rotational-vibrational transitions in this "fingerprint" region. Here we report time-resolved mid-infrared dual-comb spectroscopy for the first time, covering ~300 nm bandwidth around 3.3 {\mu}m with 6 GHz spectral resolution and 20 {\mu}s temporal resolution. As a demonstration, we study a CH4/He gas mixture in an electric discharge, while the discharge is modulated between dark and glow regimes. We simultaneously monitor the production of C2H6 and the vibrational excitation of CH4 molecules, observing the dynamics of both processes. This approach to broadband, high-resolution, and time-resolved mid-infrared spectroscopy provides a new tool for monitoring the kinetics of fast chemical reactions, with potential applications in various fields such as physical chemistry and plasma/combustion analysis.Comment: 21 page, 6 figure

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Fouriertransform- och Vernierspektroskopi med optiska frekvenskammar

    No full text
    Optical frequency comb spectroscopy (OFCS) combines two previously exclusive features, i.e., wide optical bandwidth and high spectral resolution, enabling precise measurements of entire molecular bands and simultaneous monitoring of multiple gas species in a short measurement time. Moreover, the equidistant mode structure of frequency combs enables efficient coupling of the comb power to enhancement resonant cavities, yielding high detection sensitivities. Different broadband detection methods have been developed to exploit the full potential of frequency combs in spectroscopy, based either on Fourier transform spectroscopy or on dispersive elements.There have been two main aims of the research presented in this thesis. The first has been to improve the performance of mechanical Fourier transform spectrometers (FTS) based on frequency combs in terms of sensitivity, resolution and spectral coverage. In pursuit of this aim, we have developed a new spectroscopic technique, so-called noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), and achieved a shot-noise-limited sensitivity and low ppb (parts-per-billion, 10−9) CO2 concentration detection limit in the near-infrared range using commercially available components. We have also realized a novel method for acquisition and analysis of comb-based FTS spectra, a so-called sub-nominal resolution method, which provides ultra-high spectral resolution and frequency accuracy (both in kHz range, limited only by the stability of the comb) over the broadband spectral range of the frequency comb. Finally, we have developed an optical parametric oscillator generating a frequency comb in the mid-infrared range, where the strongest ro-vibrational molecular absorption lines reside. Using this mid-infrared comb and an FTS, we have demonstrated, for the first time, comb spectroscopy above 5 ÎŒm, measured broadband spectra of several species and reached low ppb detection limits for CH4, NO and CO in 1 s.The second aim has been more application-oriented, focused on frequency comb spectroscopy in combustion environments and under atmospheric conditions for fast and sensitive multispecies detection. We have demonstrated, for the first time, cavity-enhanced optical frequency comb spectroscopy in a flame, detected broadband high temperature H2O and OH spectra using the FTS in the near-infrared range and showed the potential of the technique for flame thermometry. For applications demanding a short measurement time and high sensitivity under atmospheric pressure conditions, we have implemented continuous-filtering Vernier spectroscopy, a dispersion-based spectroscopic technique, for the first time in the mid-infrared range. The spectrometer was sensitive, fast, robust, and capable of multispecies detection with 2 ppb detection limit for CH4 in 25 ms.Optisk frekvenskamspektroskopi (OFCS) kombinerar tvĂ„ tidigare icke förenliga egenskaper, dvs. ett brett optiskt frekvensomrĂ„de med en hög spektral upplösning, vilket möjliggör noggranna mĂ€tningar av hela molekylĂ€ra absorptionsband och detektion av flera gaser samtidigt med en kort mĂ€ttid. Eftersom frekvenskammar har en regelbunden struktur med jĂ€mnt separerade laser moder kan man effektivt koppla kammen till en optisk kavitet och dĂ€rmed möjliggöra frekvenskamsdetektion med hög kĂ€nslighet. Olika metoder har utvecklats för att utnyttja frekvenskammarnas fulla potential för spektroskopi, baserad pĂ„ antingen Fouriertransform-spektroskopi eller dispersiva element.Forskningen som presenteras i denna avhandling har haft tvĂ„ huvudmĂ„l. Det första har varit att förbĂ€ttra prestandan hos mekaniska Fourier-transformspektrometrar (FTS) baserat pĂ„ frekvenskammar med avseende pĂ„ kĂ€nslighet, upplösning och spektral tĂ€ckning. I strĂ€van efter detta har vi utvecklat en ny spektroskopisk teknik, benĂ€mnd brusimmun kavitetsförstĂ€rkt optisk frekvenskamspektroskopi (NICE-OFCS), och uppnĂ„tt en hagelbrusbegrĂ€nsad kĂ€nslighet och detektionsgrĂ€nser ner till lĂ„ga ppb koncentrationer (miljarddelar, 10−9) för CO2 i det nĂ€r-infraröda frekvensomrĂ„det enbart med anvĂ€ndning av kommersiellt tillgĂ€ngliga komponenter. Vi har ocksĂ„ utvecklat en ny metod för insamling och analys av kambaserade FTS-spektra, som betecknas ha sub-nominell upplösning. Metoden gör det möjligt att uppnĂ„ ultrahög spektral upplösning och hög frekvensnoggrannhet (bĂ„da i kHz-omrĂ„det, endast begrĂ€nsad av kammens stabilitet) över kammens hela frekvensomrĂ„de. Slutligen har vi utvecklat en optisk parametrisk oscillator som genererar en frekvenskam i det mid-infraröda frekvensomrĂ„det, dĂ€r de starkaste rotations-vibrationsmolekylĂ€ra absorptionslinjerna finns. Med hjĂ€lp av denna kam och en FTS har vi för första gĂ„ngen demonstrerat frekvenskamspektroskopi över 5 ÎŒm. Vi har detekterat bredbandsspektra av flera molekylĂ€ra gaser och har, för mĂ€ttider pĂ„ 1 s, uppnĂ„tt detektionsgrĂ€nser ner till lĂ„ga ppb halter för CH4, NO och CO.Det andra syftet har varit mer applikationsorienterat: att anvĂ€nda frekvenskamspektroskopi i förbrĂ€nningsmiljö och under atmosfĂ€riska förhĂ„llanden för snabb och kĂ€nslig multiĂ€mnesdetektion. Vi har för första gĂ„ngen demonstrerat kavitetsförstĂ€rkt optisk frekvenskamspektroskopi i en flamma, dĂ€r vi har detekterat högtemperaturspektra av H2O och OH i det nĂ€r-infraröda omrĂ„det med anvĂ€ndning av FTS och visat teknikens potential för termometrisk karakterisering av flammor. För applikationer som krĂ€ver en kort mĂ€ttid och hög kĂ€nslighet under atmosfĂ€riska förhĂ„llanden har vi utvecklat ett detektionssystem baserat pĂ„ Vernier-spektroskopi med kontinuerlig filtrering, vilket Ă€r en dispersionsbaserad teknik, för första gĂ„ngen i det mid-infraröda frekvensomrĂ„det. Det befanns att spektrometern var kĂ€nslig, snabb, robust och kapabel till multiĂ€mnesdetektion med en detektionsgrĂ€ns pĂ„ 2 ppb för CH4 för korta mĂ€ttider (25 ms)

    A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems

    Full text link
    Derivation of the probability density evolution provides invaluable insight into the behavior of many stochastic systems and their performance. However, for most real-time applica-tions, numerical determination of the probability density evolution is a formidable task. The latter is due to the required temporal and spatial discretization schemes that render most computational solutions prohibitive and impractical. In this respect, the development of an efficient computational surrogate model is of paramount importance. Recent studies on the physics-constrained networks show that a suitable surrogate can be achieved by encoding the physical insight into a deep neural network. To this aim, the present work introduces DeepPDEM which utilizes the concept of physics-informed networks to solve the evolution of the probability density via proposing a deep learning method. DeepPDEM learns the General Density Evolution Equation (GDEE) of stochastic structures. This approach paves the way for a mesh-free learning method that can solve the density evolution problem with-out prior simulation data. Moreover, it can also serve as an efficient surrogate for the solu-tion at any other spatiotemporal points within optimization schemes or real-time applica-tions. To demonstrate the potential applicability of the proposed framework, two network architectures with different activation functions as well as two optimizers are investigated. Numerical implementation on three different problems verifies the accuracy and efficacy of the proposed method

    Mid-infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator

    No full text
    We present a continuous-filtering Vernier spectrometer operating in the 3.15–3.4 ”m range, based on a femtosecond doubly resonant optical parametric oscillator, a cavity with a finesse of 340, a grating mounted on a galvo scanner, and two photodiodes. The spectrometer allows acquisition of one spectrum spanning 250 nm of bandwidth in 25 ms with 8 GHz resolution, sufficient to detect molecular lines at atmospheric pressure. An active lock ensures good frequency and intensity stability of the consecutive spectra and enables continuous signal acquisition and efficient averaging. The relative frequency scale is calibrated using a Fabry–Perot etalon or, alternatively, the galvo scanner position signal. We measure spectra of a calibrated CH4 gas sample as well as dry and laboratory air and extract CH4 and H2O concentrations by multiline fitting of model spectra. The figure of merit of the spectrometer is 1.7 × 10−9 cm−1 Hz−1/2 per spectral element and the minimum detectable concentration of CH4 is 360 ppt Hz−1/2, averaging down to 90 ppt after 16 s

    Real-Time Measurement of CH<sub>4</sub> in Human Breath Using a Compact CH<sub>4</sub>/CO<sub>2</sub> Sensor

    No full text
    The presence of an elevated amount of methane (CH4) in exhaled breath can be used as a non-invasive tool to monitor certain health conditions. A compact, inexpensive and transportable CH4 sensor is thus very interesting for this purpose. In addition, if the sensor is also able to simultaneously measure carbon dioxide (CO2), one can extract the end-tidal concentration of exhaled CH4. Here, we report on such a sensor based on a commercial detection module using tunable diode laser absorption spectroscopy. It was found that the measured CH4/CO2 values exhibit a strong interference with water vapor. Therefore, correction functions were experimentally identified and validated for both CO2 and CH4. A custom-built breath sampler was developed and tested with the sensor for real-time measurements of CH4 and CO2 in exhaled breath. As a result, the breath sensor demonstrated the capability of accurately measuring the exhaled CH4 and CO2 profiles in real-time. We obtained minimum detection limits of ~80 ppbv for CH4 and ~700 ppmv for CO2 in 1.5 s measurement time
    corecore