227 research outputs found

    Maritoclax and Dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner

    Get PDF
    The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents

    Mcl-1 Inhibition Modulates ERK-Mediated Resistance in Multiple Myeloma

    Get PDF
    Novel multiple myeloma (MM) treatments have significantly improved over the previous several decades, primarily on account of targeting bone marrow microenvironment (BMM) pathways. However, drug resistance and patient relapse remain major clinical problems. The role of BMM in the upregulation of anti-apoptotic protein Mcl-1 is well documented. The Mcl-1 protein plays a critical role in the progression and acquired drug resistance in MM. The regulation of Mcl-1, a protein characterized by a short half-life, from transcription to degradation is crucial for understanding its role in cell survival. The GSK3β and Erk play important role in the stability of Mcl-1. Also, overexpression of phospho Erk is associated with the acquired resistance. In this study, we investigated Mcl-1 regulation, focusing on transcriptional and post-translational modifications and their impact on protein stability in Mcl-1 inhibitor ( KS18) treated cells. The small molecule inhibitor KS18 induces Mcl-1Ser159/Thr163 phosphorylation and ubiquitination resulting in a sharp decline in Mcl-1 protein levels. Furthermore, we assessed the effects of the KS18 in a combination with ERK inhibitors on cell viability and found that blocking the Mcl-1 stabilization mechanism improves the effectiveness and potency of KS18. Furthermore, we compared KS18 to different classes of chemotherapeutic agents, such as GSK3β/α inhibitor (LY209031), ERK inhibitor (SEH77272), MEK inhibitor (PD18435), and Akt inhibitor (AZD5363). Interestingly, we found KS18 more potent than other agents. Combined, our results propose a strong rationale for novel combination therapies using selective KS18 and ERK inhibitors, which have the potential to markedly improve the outcome of MM treatment. This may also address one of the major clinical problems, drug resistance, and enhance the use of existing drugs

    Notch Activation Is Dispensable for D, L-Sulforaphane-Mediated Inhibition of Human Prostate Cancer Cell Migration

    Get PDF
    D, L-Sulforaphane (SFN), a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B) to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation) of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell migration, which should be viewed as a therapeutic advantage as Notch activation is frequent in human prostate cancers. © 2012 Hahm et al

    PI-3K and Akt are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells

    Get PDF
    5-Methylchrysene has been found to be a complete carcinogen in laboratory animals. However, the tumor promotion effects of (±)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) remain unclear. In the present work, we found that 5-MCDE induced marked activator protein-1 (AP-1) activation in Cl41 cells. 5-MCDE also induced a marked activation of phosphatidylinositol 3-kinase (PI-3K). Inhibition of PI-3K impaired 5-MCDE–induced AP-1 transactivation, suggesting that PI-3K is an upstream kinase involved in AP-1 activation by 5-MCDE. Furthermore, we found that Akt is a PI-3K downstream mediator for 5-MCDE–induced AP-1 transactivation, whereas another PI-3K downstream kinase, p70S6K, was not involved in AP-1 activation by 5-MCDE. Moreover, inhibition of Akt activation blocked 5-MCDE–induced activation of extracellular signal–regulated protein kinases (ERKs) and c-Jun NH2-terminal kinases (JNKs), whereas it did not affect p38K activation. Consistently, overexpression of a dominant-negative mutant of ERK2 or JNK1 blocked the AP-1 activation by 5-MCDE. These results demonstrate that 5-MCDE is able to induce AP-1 activation, and the AP-1 induction is specifically through a PI-3K/Akt–dependent and p70S6K-independent pathway

    Chemopreventive Effects of the p53-Modulating Agents CP-31398 and Prima-1 in Tobacco Carcinogen-Induced Lung Tumorigenesis in A/J Mice

    Get PDF
    AbstractLung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse) by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group) or 34 weeks (15 mice/group) to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001) lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001) lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation

    Influence of ceramide on lipid domain stability studied with small-angle neutron scattering: The role of acyl chain length and unsaturation

    Get PDF
    Ceramides and diacylglycerols are groups of lipids capable of nucleating and stabilizing ordered lipid domains, structures that have been implicated in a range of biological processes. Previous studies have used fluorescence reporter molecules to explore the influence of ceramide acyl chain structure on sphingolipid-rich ordered phases. Here, we use small-angle neutron scattering (SANS) to examine the ability of ceramides and diacylglycerols to promote lipid domain formation in the well-characterized domain- forming mixture DPPC/DOPC/cholesterol. SANS is a powerful, probe-free technique for interrogating membrane heterogeneity, as it is differentially sensitive to hydrogen\u27s stable isotopes protium and deuterium. Specifcally, neutron contrast is generated through selective deuteration of lipid species, thus enabling the detection of nanoscopic domains enriched in deuterated saturated lipids dispersed in a matrix of protiated un- saturated lipids. Using large unilamellar vesicles, we found that upon replacing 10 mol % DPPC with either C16:0 or C18:0 ceramide, or 16:0 diacylglycerol (dag), lipid domains persisted to higher temperatures. However, when DPPC was replaced with short chain (C6:0 or C12:0) or very long chain (C24:0) ceramides, or ceramides with unsaturated acyl chains of any length (C6:1(3), C6:1(5), C18:1, and C24:1), as well as C18:1-dag, lipid domains were destabilized, melting at lower temperatures than those in the DPPC/DOPC/cholesterol system. These results show how ceramide acyl chain length and unsaturation influence lipid domains, and have implications for how cell membranes might modify their function through the generation of different ceramide species

    Identification of a novel quinoxaline-isoselenourea targeting the STAT3 pathway as a potential melanoma therapeutic

    Get PDF
    The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of five melanoma cell lines, including B-RAFV600E-mutant and wild-type (WT) cells. Compound 1 (IC50 range 0.8–3.8 µM) showed lower IC50 values than compound 3 (IC50 range 8.1–38.7 µM) and the mutant B-RAF specific inhibitor PLX-4032 (IC50 ranging from 0.4 to >50 µM), especially at a short treatment time (24 h). These effects were long-lasting, since melanoma cells did not recover their proliferative potential after 14 days of treatment. In addition, we confirmed that compound 1 induced cell death by apoptosis using Live-and-Dead, Annexin V, and Caspase3/7 apoptosis assays. Furthermore, compound 1 reduced the protein levels of STAT3 and its phosphorylation, as well as decreased the expression of STAT3-regulated genes involved in metastasis and survival, such as survivin and c-myc. Compound 1 also upregulated the cell cycle inhibitor p21. Docking studies further revealed the favorable binding of compound 1 with the SH2 domain of STAT3, suggesting it acts through STAT3 inhibition. Taken together, our results suggest that compound 1 induces apoptosis by means of the inhibition of the STAT3 pathway, non-specifically targeting both B-RAF-mutant and WT melanoma cells, with much higher cytotoxicity than the current therapeutic drug PLX-4032

    Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA

    Get PDF
    Endogenous 5-methylcytosine (MeC) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational ‘hotspots' for smoking induced lung cancer. MeC enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5′-CCCGGCACCC GC[15N3,13C1-G]TCCGCG-3′, + strand) were prepared containing [15N3, 13C1]-guanine opposite unsubstituted cytosine, MeC, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2′-deoxynucleosides, N2-BPDE-dG adducts formed at the [15N3, 13C1]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N2-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N2 position of guanin

    Novel seleno-aspirinyl compound AS-10 induces apoptosis, G1 arrest of pancreatic ductal adenocarcinoma cells, inhibits their NF-kappa B signaling and synergizes with gemcitabine cytotoxicity

    Get PDF
    Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-B) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-)-stimulated NF-B nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of B (IB) protein. As NF-B activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy
    • …
    corecore