21 research outputs found

    Développement et optimisation de méthodes de mesures d'échauffements nucléaires et de flux gamma dans les réacteurs expérimentaux : identification, maîtrise, traitement et réduction des incertitudes associées

    No full text
    L'objectif de cette thèse vise à mettre au point et à améliorer les méthodes de mesures d'échauffements nucléaires auprès des maquettes critiques du CEA-Cadarache EOLE et MINERVE, au moyen de détecteurs thermo-luminescents (TLD), de détecteurs à luminescence optiquement stimulée (OSLD – nouvellement mis en œuvre dans le cadre de ce travail de thèse) et d'une chambre d'ionisation. Il s'agit d'identifier, de hiérarchiser, de traiter et enfin de réduire les différentes sources d'incertitudes et de biais systématiques associés à la mesure.Une série d'expériences a été mise en place dans le réacteur MINERVE. Les mesures ont été réalisées dans un environnement en aluminium ou en hafnium à l'aide d'un nouveau protocole : les TLD ont été étalonnés individuellement, la répétabilité de la mesure a été évaluée expérimentalement et les lois de chauffe des TLD ont été optimisées, conduisant à une réduction des incertitudes de mesures. Des mesures de gammas émis de façon différée après arrêt du réacteur MINERVE ont également été réalisées : les résultats obtenus montrent un bon accord des mesures avec les trois types de détecteurs utilisés.L'interprétation de ces mesures nécessite des calculs pour tenir compte des facteurs de correction, liés à l'environnement et au type de détecteurs utilisés. Ainsi, des corrections de la contribution des neutrons à la dose totale intégrée par les détecteurs ont été évaluées à l'aide de deux méthodes de calcul. Ces corrections ont été obtenues sur la base de simulations Monte Carlo couplées neutron-gamma et gamma-électron à l'aide du code MCNP.The objective of this thesis is to develop and to improve the nuclear heating measurement methods in MINERVE and EOLE experimental reactors at CEA-Cadarache, using thermo-luminescent detectors (TLD), optically stimulated luminescence detectors (OSLD – newly implemented in the context of this thesis) and an ionization chamber. It is to identify, prioritize, treat and reduce the various sources of uncertainty and systematic bias associated with the measurement.A series of experiments was set up in the MINERVE reactor. The measurements were carried out in an aluminum or hafnium surrounding using a new procedure methodology. The TLD are calibrated individually, the repeatability of the measurement is experimentally evaluated and the laws of TLD heat are optimized. The measurements of the gamma emitted, with a delay (delayed gamma) after shutdown of the MINERVE reactor, were also carried out using TLD and OSLD detectors with the aluminum pillbox as well as by ionization chamber. The results show a good correlation between the measurements recorded by these three detectors.The interpretation of these measurements needs to take account the calculation of cavity correction factors related to the surrounding and the type of detector used. Similarly, the correction due to the neutrons contributions to the total dose integrated by the detectors are evaluated with two calculation methods. These corrections are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles using the MCNP

    Développement et optimisation de méthodes de mesures d'échauffements nucléaires et de flux gamma dans les réacteurs expérimentaux (identification, maîtrise, traitement et réduction des incertitudes associées)

    No full text
    L'objectif de cette thèse vise à mettre au point et à améliorer les méthodes de mesures d'échauffements nucléaires auprès des maquettes critiques du CEA-Cadarache EOLE et MINERVE, au moyen de détecteurs thermo-luminescents (TLD), de détecteurs à luminescence optiquement stimulée (OSLD nouvellement mis en œuvre dans le cadre de ce travail de thèse) et d'une chambre d'ionisation. Il s'agit d'identifier, de hiérarchiser, de traiter et enfin de réduire les différentes sources d'incertitudes et de biais systématiques associés à la mesure.Une série d'expériences a été mise en place dans le réacteur MINERVE. Les mesures ont été réalisées dans un environnement en aluminium ou en hafnium à l'aide d'un nouveau protocole : les TLD ont été étalonnés individuellement, la répétabilité de la mesure a été évaluée expérimentalement et les lois de chauffe des TLD ont été optimisées, conduisant à une réduction des incertitudes de mesures. Des mesures de gammas émis de façon différée après arrêt du réacteur MINERVE ont également été réalisées : les résultats obtenus montrent un bon accord des mesures avec les trois types de détecteurs utilisés.L'interprétation de ces mesures nécessite des calculs pour tenir compte des facteurs de correction, liés à l'environnement et au type de détecteurs utilisés. Ainsi, des corrections de la contribution des neutrons à la dose totale intégrée par les détecteurs ont été évaluées à l'aide de deux méthodes de calcul. Ces corrections ont été obtenues sur la base de simulations Monte Carlo couplées neutron-gamma et gamma-électron à l'aide du code MCNP.The objective of this thesis is to develop and to improve the nuclear heating measurement methods in MINERVE and EOLE experimental reactors at CEA-Cadarache, using thermo-luminescent detectors (TLD), optically stimulated luminescence detectors (OSLD newly implemented in the context of this thesis) and an ionization chamber. It is to identify, prioritize, treat and reduce the various sources of uncertainty and systematic bias associated with the measurement.A series of experiments was set up in the MINERVE reactor. The measurements were carried out in an aluminum or hafnium surrounding using a new procedure methodology. The TLD are calibrated individually, the repeatability of the measurement is experimentally evaluated and the laws of TLD heat are optimized. The measurements of the gamma emitted, with a delay (delayed gamma) after shutdown of the MINERVE reactor, were also carried out using TLD and OSLD detectors with the aluminum pillbox as well as by ionization chamber. The results show a good correlation between the measurements recorded by these three detectors.The interpretation of these measurements needs to take account the calculation of cavity correction factors related to the surrounding and the type of detector used. Similarly, the correction due to the neutrons contributions to the total dose integrated by the detectors are evaluated with two calculation methods. These corrections are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles using the MCNP.AIX-MARSEILLE1-BU Sci.St Charles (130552104) / SudocSudocFranceF

    Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    No full text
    The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR), is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…). This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN) to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE) of CEA, Cadarache to increase the experimental measurement accuracy

    The CANDELLE experiment for characterization of neutron sensitivity of LiF TLDs

    Get PDF
    As part of the design studies conducted at CEA for future power and research nuclear reactors, the validation of neutron and photon calculation schemes related to nuclear heating prediction are strongly dependent on the implementation of nuclear heating measurements. Such measurements are usually performed in low-power reactors, whose core dimensions are accurately known and where irradiation conditions (power, flux and temperature) are entirely controlled. Due to the very low operating power of such reactors (of the order of 100 W), nuclear heating is assessed by using dosimetry techniques such as thermoluminescent dosimeters (TLDs). However, although they are highly sensitive to gamma radiation, such dosimeters are also, to a lesser extent, sensitive to neutrons. The neutron dose depends strongly on the TLD composition, typically contributing to 10-30% of the total measured dose in a mixed neutron/gamma field. The experimental determination of the neutron correction appears therefore to be crucial to a better interpretation of doses measured in reactor with reduced uncertainties. A promising approach based on the use of two types of LiF TLDs respectively enriched with lithium-6 and lithium-7, precalibrated both in photon and neutron fields, has been recently developed at INFN (Milan, Italy) for medical purposes. The CANDELLE experiment is dedicated to the implementation of a pure neutron field “calibration” of TLDs by using the GENEPI-2 neutron source of LPSC (Grenoble, France). Those irradiation conditions allowed providing an early assessment of the neutron components of doses measured in EOLE reactor at CEA Cadarache with 10% uncertainty at 1σ
    corecore