62 research outputs found

    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells

    Get PDF
    Introduction. The extremely-low frequency electromagnetic field (ELFEMF) has been proposed for use in cancer therapy since it was found that magnetic waves interfere with many biological processes. Gold nanoparticles (Au-NPs) have been widely used for drug delivery during cancer in vitro studies due to their low cytotoxity and high biocompatibility. The electroporation of cancer cells in a presence of Au-NPs (EP Au-NPs) can induce cell apoptosis, alterations of cell cycle profile and morphological changes. The impact of ELFEMF and EP Au-NPs on morphology, cell cycle and activation of apoptosis-associated genes on Hep-2 laryngeal cancer cell line has not been studied yet. Materials and methods. ELFEMF on Hep-2 cells were carried out using four different conditions: 25/50 mT at 15/30 min, while Au-NPs were used as direct contact (DC) or with electroporation (EP, 10 pulses at 200V, equal time intervals of 4 sec). MTT assay was used to check the toxicity of DC Au-NPs. Expression of CASP3, P53, BAX and BCL2 genes was quantified using qPCR. Cell cycle was analyzed by flow cytometry. Hematoxylin and eosin (HE) staining was used to observe cell morphology. Results. Calculated IC50 of DC Au-NPs 24.36 μM (4.79 μg/ml) and such concentration was used for further DC and EP AuNPs experiments. The up-regulation of pro-apoptotic genes (CASP3, P53, BAX) and decreased expression of BCL2, respectively, was observed for all analyzed conditions with the highest differences for EP AuNPs and ELFEMF 50 mT/30 min in comparison to control cells. The highest content of cells arrested in G2/M phase was observed in ELFEMF-treated cells for 30 min both at 25 or 50 mT, while the cells treated with EP AuNPs or ELFEMF 50 mT/15 min showed highest ratios of apoptotic cells. HE staining of electroporated cells and cells exposed to ELFEMF’s low and higher frequencies for different times showed nuclear pleomorphic cells. Numerous apoptotic bodies were observed in the irregular cell membrane of neoplastic and necrotic cells with mixed euchromatin and heterochromatin. Conclusions. Our observations indicate that treatment of Hep-2 laryngeal cancer cells with ELFEMF for 30 min at 25–50 mT and EP Au-NPs can cause cell damage inducing apoptosis and cell cycle arrest

    International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes

    Get PDF
    This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.Cardiolog

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    M17322: MPEG-4 SP conformance testing status report with Btype

    No full text
    ISO/IEC JTC1/SC29/WG11, 91st MPEG Meeting Document Registe

    Construction of novel polybenzoxazine coating precursor exhibiting excellent anti-corrosion performance through monomer design

    No full text
    In this study, we utilized salicylaldehyde (SA) and p-toluidine (Tol-NH2) to synthesize 2-(Z)[(4-methylphenyl)imino]methylphenol (SA-Tol-SF), which was then reduced to 2-[(4-methylphenyl)amino]methylphenol, producing SA-Tol-NH. SA-Tol-NH was further reacted with formaldehyde to create SA-Tol-BZ monomer. Poly(SA-Tol-BZ) was produced by thermally curing it at 210 °C, after synthesizing it from SA-Tol-BZ. The chemical structure of SA-Tol-BZ was analyzed using various analytical techniques such as FT-IR, 1H NMR spectroscopy, and 13C NMR spectroscopy TGA, SEM, DSC, and X-ray analyses. Afterward, we applied the obtained poly(SA-Tol-BZ) onto mild steel (MS) using thermal curing and spray coating techniques. To examine the anticorrosion attributes of MS coated with poly(SA-Tol-BZ), electrochemical characterization was employed. The study proved that poly(SA-Tol-BZ) coating had a high level of effectiveness in preventing corrosion on MS, with an efficacy of 96.52%, and also exhibited hydrophobic properties
    corecore