4 research outputs found

    Design and implementation of an ultrasonic sensor for rapid monitoring of industrial malolactic fermentation of wines

    Get PDF
    Ultrasound is an emerging technology that can be applied to monitor food processes. However, ultrasonic techniques are usually limited to research activities within a laboratory environment and they are not extensively used in industrial processes. The aim of this paper is to describe a novel ultrasonic sensor designed to monitor physical–chemical changes that occur in wines stored in industrial tanks. Essentially, the sensor consists of an ultrasonic transducer in contact with a buffer rod, mounted inside a stainless steel tube section. This structure allows the ultrasonic sensor to be directly installed in stainless steel tanks of an industrial plant. The operating principle of this design is based on the measurement of ultrasonic velocity of propagation. To test its proper operation, the sensor has been used to measure changes of concentration in aqueous samples and to monitor the progress of a malolactic fermentation of red wines in various commercial wineries. Results show the feasibility of using this sensor for monitoring malolactic fermentations in red wines placed in industrial tanks.Postprint (author's final draft

    Multichannel QCM-based system for continuous monitoring of bacterial biofilm growth

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Quartz crystal microbalance (QCM) sensors are becoming a good alternative to analytical methods for the measurement of bacterial growth in liquid media culture. For this purpose, two essential resonance parameters allow monitoring of biofilm formation: the series resonance frequency shift and the change of the resistance at this frequency. Nevertheless, several problems arise in determining these parameters, as their relative variation is very small. This means that an accurate procedure must be implemented for the measurement of the QCM resonance parameters, including the automatic calibration of the frequency response effects of the measurement circuits and the automatic compensation of the static electrical capacitance of the QCM. In this paper, a novel multichannel system for on-line monitoring of biofilm formation based on QCM sensors is proposed. QCM resonance parameters are determined from the electrical impedance analysis by means of an auto-balanced impedance bridge. This configuration has allowed the implementation of an affordable multichannel measurement instrument. Obtained results, based on binary mixtures of water-glycerol measurements and real microorganism experiments, are in good agreement with the theoretical behaviour. These results show the great potential of this instrument to be used for monitoring microbial growth and biofilm formation.Peer ReviewedPostprint (author's final draft

    Multichannel QCM-based system for continuous monitoring of bacterial biofilm growth

    No full text
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Quartz crystal microbalance (QCM) sensors are becoming a good alternative to analytical methods for the measurement of bacterial growth in liquid media culture. For this purpose, two essential resonance parameters allow monitoring of biofilm formation: the series resonance frequency shift and the change of the resistance at this frequency. Nevertheless, several problems arise in determining these parameters, as their relative variation is very small. This means that an accurate procedure must be implemented for the measurement of the QCM resonance parameters, including the automatic calibration of the frequency response effects of the measurement circuits and the automatic compensation of the static electrical capacitance of the QCM. In this paper, a novel multichannel system for on-line monitoring of biofilm formation based on QCM sensors is proposed. QCM resonance parameters are determined from the electrical impedance analysis by means of an auto-balanced impedance bridge. This configuration has allowed the implementation of an affordable multichannel measurement instrument. Obtained results, based on binary mixtures of water-glycerol measurements and real microorganism experiments, are in good agreement with the theoretical behaviour. These results show the great potential of this instrument to be used for monitoring microbial growth and biofilm formation.Peer Reviewe

    Sistema de detección y monitorización del crecimiento de biopelículas bacterianas

    No full text
    Sistema de detección y monitorización del crecimiento de biopelículas bacterianas, que comprende: - una cámara termostática (1) con medios de control de temperatura para mantener la temperatura en su interior; - una placa multicelda de cultivo (3) provista de celdas individuales (30) previstas para alojar un medio líquido; - sensores piezoeléctricos (4) para soportar individualmente biopelículas bacterianas, - una estructura de soporte (6) para sujetar de forma extraíble los sensores piezoeléctricos (4) que se sitúa frente a la placa multicelda de cultivo de forma que cada sensor (4) se introduce verticalmente en una de las celdas individuales (30). La estructura (6) tiene también una placa electrónica (5) y conexiones eléctricas que se acoplan con la conexión eléctrica de cada uno de los sensores (4), - y un equipo de control previsto para la recepción de la señal eléctrica medida por cada uno de los sensores piezoeléctricos (4).Peer reviewedUniversitat politécnica de Catalunya, Consejo Superior de Investigaciones Científicas (España)A1 Solicitud de patente con informe sobre el estado de la técnic
    corecore