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Abstract 

 

Quartz crystal microbalance (QCM) sensors are becoming a good alternative to analytical methods for the 

measurement of bacterial growth in liquid media culture. For this purpose, two essential resonance parameters 

allow monitoring of biofilm formation: the series resonance frequency shift and the change of the resistance at this 

frequency. Nevertheless, several problems arise in determining these parameters, as their relative variation is very 

small. This means that an accurate procedure must be implemented for the measurement of the QCM resonance 

parameters, including the automatic calibration of the frequency response effects of the measurement circuits and 

the automatic compensation of the static electrical capacitance of the QCM.  

 

In this paper, a novel multichannel system for on-line monitoring of biofilm formation based on QCM sensors is 

proposed. QCM resonance parameters are determined from the electrical impedance analysis by means of an auto-

balanced impedance bridge. This configuration has allowed the implementation of an affordable multichannel 

measurement instrument. Obtained results, based on binary mixtures of water-glycerol measurements and real 

microorganism experiments, are in good agreement with the theoretical behaviour. These results show the great 

potential of this instrument to be used for monitoring microbial growth and biofilm formation. 

 

 

1. Introduction 

 

Microbiology requires systems capable of measuring, controlling and monitoring bacterial growth. For this purpose, 

classical methods are based on the observation of bacterial growth within liquid media cultures [1]. This is usually 

carried out using destructive and discontinuous techniques, which result in the breakage of the biofilm complex 

structure. This fact has strongly limited the study of the factors that affect the formation and control of bacteria film 

that take part in the experiments. For this reason, in recent years novel methods and electronic instrumentation 

have been devised in order to become good alternatives to these classical techniques [2]. The most relevant 

approaches are optical methods [3]-[6], electrical impedance measurement and spectroscopy [7]-[9], microfluidic 

devices [10],[11], and piezoelectric devices based systems. With respect to the latter, tuning forks [12],[13], surface 

acoustic wave devices [14],[15], and quartz crystal microbalances (QCM) [16]-[23], they all have demonstrated great 

potential in the study of biofilm growth. 

 

In this paper, the analysis of the mechanical resonance of a QCM, on whose surface the microorganisms adhere and 

the biofilm grows, is used. The usefulness of QCM is that they permit the direct in situ real-time observation of the 

overall process, from the initial bacteria adhesion to the biofilm formation and subsequent growth, when they are 

compared with other popular techniques such as direct cell counting methods or the determination of dry mass. Also 



QCM techniques provide an easy way to mechanize and automate the monitoring procedure. Two essential 

resonance parameters reflect the changes in the QCM contacting medium: the series resonance frequency shift Δfs 

and the change of the resistance at this frequency ΔRm. These two parameters correlate with the density and 

viscosity of the medium [22],[23]. They are very sensitive to the changes in the solid to viscous liquid interface and to 

the appearance of a viscoelastic film that gradually replaces the contact of the QCM with the liquid. Nevertheless, 

several problems arise in the determination of Δfs and ΔRm when a viscous liquid or a lossy film heavily damps the 

QCM as in our application happens. These constraints can be overcome by using the QCM with the widely used 

dissipation monitoring techniques [24],[25] or alternatively, as in the proposed system, by means of the 

measurement of the QCM electrical impedance [20]-[21] but addressing first several key issues that have hindered 

its use in this application in the past. The compensation of the static electrical capacitance Co of the QCM, the 

accurate determination of the resonance frequency in heavy damped QCM and the high frequency resolution 

required in order to detect small relative changes due to microorganism process are some of the most important. 

The current availability of high performance and low-cost analog and digital integrated circuits has made possible to 

implement a compact, rapid and affordable system suitable for multichannel QCM sensor measurements as 

requested in our application. 

 

The novel multichannel system for on-line biofilm formation monitoring is based on QCM sensor resonance 

parameters obtained from the electrical impedance analysis that is measured by means of an auto-balanced 

impedance bridge. System architecture, measurement procedure, automatic compensation of the static electrical 

capacitance Co of the QCM, and accurate extraction of the series resonance frequency fs and the electrical 

impedance at resonance Rm have been improved and optimised in order to meet the system demanding 

requirements in this application. This instrument allows the simultaneous monitoring of microbial growth and 

biofilm formation under controlled ambient in multiwell Petri plates by placing one QCM sensor in each well so that 

the measurement is only sensitive to biofilm changes. This makes it especially useful for microbiologists in the study 

of biofilm evolution dynamics and the research of bacterial inactivation and new biocide substances. 

 

 

2. Theoretical 

 

2.1. The Butterworth Van Dyke equivalent circuit. 

 

A QCM is a highly sensitive sensor based on the measurement of the resonance parameters of a thickness-shear 

piezoelectric resonator. The sensor changes its resonance parameters due to the deposit on it of a small amount of 

mass [22], [23], [26]. Around its resonance, the electrical impedance of a QCM can be reduced to the Butterworth 

van Dyke (BVD) electrical equivalent model [27] as depicted in Fig. 1. 

 



 
Fig. 1. Butterworth-van Dyke model of a QCM. 

 

According to Fig. 1, the BVD circuit consists of two parallel branches. The branch on the left is the equivalent 

capacitance including the static electrical capacitance of the crystal, and the holder and connector capacitances. The 

branch on the right corresponds to the so-called motional impedance which is contributed by the acoustic load 

impedance acting at the surfaces of the quartz crystal. This acoustic load can consist of a single rigid film, a semi-

infinite Newtonian liquid, a single viscoelastic film, or a multilayer arrangement. Therefore the total admittance can 

be expressed as the sum of the motional admittance and the admittance due to the capacitance Co as shown in (1) 

and the series resonance frequency is given by (2). 
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In a QCM application, the motional inductance Lm increases when a mass is in contact with the crystal electrodes. 

This is the reason why the frequency shift of the series resonance is a sensitive indicator of the attached mass or 

film. Also, the motional branch can be reduced to resistance Rm at resonance representing a maximum in the 

admittance. Its measurement provides important information about the acoustic load since soft films and viscous 

liquids increase motional losses. Nevertheless, in order to measure properly the frequency shift of the series 

resonance ∆fs and the change of motional resistance ΔRm, the effect of the capacitance Co must be taken into 

account. Fig. 2 depicts, qualitatively, the typical locus of the QCM total admittance for three different values of Rm. 

As it can be noticed, both the high admittance zero-phase frequency fr and the maximum admittance frequency fmax 

give a good approximation of the resonance frequency fs for low values of Rm. However, when the value of Rm 

and/or the value of the parasitic capacitance Co increase, fmax and fr frequencies cannot be longer considered as the 

resonance frequency fs. On the contrary, if the parasitic capacitance Co is compensated, the maximum admittance 

frequency fmax or the zero-phase frequency fr could be the appropriate tracking condition for the maximum 

admittance monitoring. 

 



 
 

Fig. 2. Graphical representation of QCM admittance, for three different values of Rm. G and B are the real and imaginary parts of 

admittance. 

 

It can be concluded that when determining fs and Rm from the measurement of the total QCM admittance or 

impedance, the capacitance effect of Co must be taken into account by the electronic circuit and it must be 

compensated accordingly. 

 

 

2.2. Liquid-contact measurements. 

 

The Sauerbrey expression given by (3) is commonly used to relate mass loading with resonance frequency shift ∆fs 

for a QCM [28]. C factor is the sensitivity of the resonator in Hz/(ng/cm2), and ∆m is the change in mass per unit area 

in ng/cm2. This expression is only valid for a homogeneous film rigidly attached to the QCM surface. 

 

∆𝑓𝑓𝑠𝑠 = −𝐶𝐶 ∙ ∆𝑚𝑚  (3) 

 

In the case of liquids, the operation of the QCM is also possible and its electrical impedance is sensible to the 

changes at the interface between the crystal and the liquid. The works carried out by Glassford [29], and later by 

Kanazawa and Gordon [30] demonstrated the resonance frequency dependence upon the viscosity and the density 

of the liquid solution in contact with the QCM. According to Kanazawa and Gordon, the change in the resonance 

frequency due to the liquid solution properties is given by (4). 
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where ρl is the density of the liquid, ηl is the viscosity of the liquid, ρq and µq are the density and rigidity modulus of 

the quartz crystal respectively. 

 

On the other hand, viscous coupling of the liquid medium to the crystal surface results in a damped resonance 

oscillation. The viscous loss is manifested as an increase in resistance Rm of the QCM resonator. Thus, the 
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measurement of this resistance is a good indicator to obtain the liquid solution viscosity. The change in the 

resistance at series resonance of the QCM under liquid loading [31] is given by (5). 
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Where n is the number of QCM sides in contact with liquid, and Lu is the inductance for the unperturbed, i.e. dry, 

resonator. 

 

To sum up, in order to characterize the biofilm growth it is necessary to measure the two main parameters of the 

QCM sensor: the series resonance frequency and the resistance at this frequency. 

 

 

2.3.QCM electronic interface: design alternatives.  

 

In order to properly measure the QCM electrical impedance and its relevant parameters, the resonance frequency fs 

and the QCM series resistance at resonance Rm, many electronic circuits are found in literature based on network or 

impedance analysis [32]-[34], oscillators [35],[36], lock-in techniques [37]-[39], and impulse excitation and decay 

methods [40]. Most of these circuits have in common that are complex, expensive or they require manual 

compensation of the static capacitance Co effect. Moreover, these problems get even worse in the design of an on-

line multichannel system. 

 

Table I summarizes the advantages and disadvantages the above mentioned methods have. According to this table, 

the impedance measurement method gives the best results in terms of accuracy, but in the past it had serious 

limitations due to the high cost and large dimensions. This fact restricted its use to a laboratory environment. In 

addition, this option was not suitable for simultaneous multiple sensors measurements. However, nowadays the 

availability of high performance and low-cost analog and digital integrated circuits makes possible to implement 

specific impedance analysers that are compact, rapid and affordable for the accurate measurement of the QCM 

resonance parameters. In addition, as these circuits are optimized for fast data acquisition, they are suitable for 

multichannel sensor measurements as required in our application. 

 

Finally, special attention must also be paid to the QCM interface in order to achieve the required accuracy and 

bandwidth. For this reason, the auto-balancing bridge method has been selected for this purpose. Also, in this work, 

it is proposed an automated compensation algorithm that determines the Co value and cancels its effect. 

 

 

 

 

 



Circuit alternative Advantages Disadvantages 

Impedance or Network 

Analysers 

• No external circuitry influences. 

• Parasitic influences excluded by 

calibration. 

• High accuracy measurements. 

• High cost. 

• Complex. 

• Large dimensions. 

Oscillator circuit based on a 

quartz crystal. 

 

• Simplicity. 

• Low cost. 

• Continuous and rapid monitoring of 

the resonance frequency. 

 

• Resonance frequency and resistance at 

resonance frequency measurements are 

affected by capacitance Co. 

• Difficulty in maintaining the circuit 

oscillation due to parasitic capacitances. 

• Manual procedure to compensate 

capacitor Co. 

Phase-looked-loop circuit • Relatively simple circuit. 

• Capacitance Co compensation. 

• Continuous monitoring of the 

resonance frequency and resistance at 

series resonance. 

• Complex calibration if a good 

compensation of capacitance Co is 

required. 

• Difficulty to automate the compensation 

of capacitance. 

Impulse excitation and 

decay methods. 

• Accurate measurement of resonance 

frequency. 

• Easy cancellation of Co. 

• More appropriate for laboratory 

environments. 

• High complexity and cost for accurate 

measurements of highly damped QCM. 

 

Table I. Circuit alternatives for resonance frequency and resistance at series resonance measurements: advantages and 

disadvantages. 

 
 
3. Fundamentals of the measurement system. 

 

3.1. Auto-balancing impedance bridge. 

 

An auto-balancing impedance bridge based circuit has been chosen for implementing the QCM interface in the 

measurement system. This technique is exceptionally accurate over a broad range of impedances and frequencies 

and it has the advantage of maintaining one of the QCM terminals virtually connected to ground. 

 

 
Fig. 3. Auto-balancing impedance bridge scheme. 



 

As shown in Fig. 3, the auto-balancing impedance bridge is based on an I-V converter configured as an inverting 

op-amp stage. Basically, it employs a feedback resistor R, the unknown impedance ZX that corresponds to the QCM 

sensor impedance, and a reference voltage source V1. Applying the Kirchoff’s Current Law, it is possible to calculate 

the QCM sensor electrical impedance Zx at the angular frequency ω of the reference voltage source from the circuit 

parameters by means of (6). 

 

𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗) ≅  −𝑉𝑉1(𝑗𝑗𝑗𝑗)
𝑉𝑉2(𝑗𝑗𝑗𝑗) · 𝑅𝑅  (6) 

 

From (6), the magnitude and phase of the QCM sensor impedance at a specific frequency ω can be calculated. In 

order to find the resonance parameters of the sensor, the frequency shift of the series resonance ∆fs and the change 

of the motional resistance ΔRm, a frequency sweep of the reference voltage source is performed. Therefore, the 

impedance Zx is measured at different frequencies in order to find its minimum, which corresponds to the resonance.  

 

It should be noted that the impedance measured from the circuit described in Fig. 3 corresponds to the total 

impedance Zx(jω), that is composed of the motional impedance Zm(jω) and the impedance due to the electrical 

capacitance ZCo(jω). For this reason, in order to achieve a better accuracy in the measurement of the resonance 

parameters, the parasitic capacitance Co must be compensated. 

 

3.2 Compensation of the op-amp frequency response effect 

 

The selection of the op-amp is critical as the accuracy at high frequencies is affected by the open-loop voltage gain 

frequency response of the op-amp used in the I-V converter. For this reason, an op-amp with a high GBW must be 

chosen in order to reduce the measurement error at high frequencies.  

 

In order to calculate the impedance Zx(jω), both signals V1(jω) and V2(jω) must be measured as depicted in (6). Due 

to the fact that the V2(jω) value is affected by the frequency response of the op-amp, the measured value does not 

correspond with the real one. The equation (7) gives the relationship between both values. 

 

𝑍𝑍𝑥𝑥𝑥𝑥(𝑗𝑗𝑗𝑗) = 𝑉𝑉2(𝑗𝑗𝑗𝑗)
𝑉𝑉1(𝑗𝑗𝑗𝑗) =  𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗) + 𝑅𝑅+ 𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗)

𝑎𝑎(𝑗𝑗𝑗𝑗)  (7) 

 

Where Zxe(jω) corresponds to the estimated value of the impedance, obtained from the measurements of the signals 

V1(jω) and V2(jω) by using the auto-balanced bridge, Zx(jω) corresponds to the real value of the impedance, and a(jω) 

is the op-amp frequency response.  

 

In order to reduce the error introduced by the op-amp frequency response, a calibration procedure was developed, 

which consists of measuring two different known impedance values by using the auto-balancing impedance bridge: a 



short-circuit and a known accurate impedance, preferably a resistance, to minimise errors. Consequently, the 

electrical impedance of the QCM Zx(jω) can be obtained from these calibration measurements by means of (8) 

 

𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗) =  𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗𝑗𝑗) · 𝑍𝑍𝑥𝑥𝑥𝑥(𝑗𝑗𝑗𝑗)− 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗𝑗𝑗)
𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗𝑗𝑗)− 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗𝑗𝑗)  (8) 

 

In (8), Zcce(jω) and Zcale(jω) correspond to the estimated values of the QCM impedance for the short-circuit and the 

known accurate impedance, respectively. Zcal(jω) is the real value of the known impedance.  

 

 

3.3. Capacitance Co compensation algorithm. 

 

As explained in section 2.1, the effect of the QCM static capacitance Co must be cancelled from the measurement of 

electrical impedance Zx(jω). The simplest way is to estimate its value from impedance measurements and then use it 

for the cancellation from the total impedance Zx(jω). For this purpose, the motional impedance Zm(jω) and the 

impedance due to the capacitance ZCo(jω) must be taken into account, as shown in (9). 

 

𝑍𝑍𝑚𝑚(𝑗𝑗𝑗𝑗)  =  𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗)·𝑍𝑍𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗)
𝑍𝑍𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗)−𝑍𝑍𝑥𝑥(𝑗𝑗𝑗𝑗)   (9) 

 

The estimation of capacitance Co is performed at a frequency ωa much lower than the series resonance frequency ωs, 

where the QCM total impedance Zx(jωa) is approximately equal to the impedance due to the electrical capacitance 

ZCo(jωa) as given by (10). 

 

𝑍𝑍𝑥𝑥(𝑗𝑗𝜔𝜔𝑎𝑎) ≅ 𝑍𝑍𝐶𝐶𝐶𝐶  (𝑗𝑗𝜔𝜔𝑎𝑎) = 1
𝑗𝑗·𝐶𝐶𝐶𝐶·𝜔𝜔𝑎𝑎

       (𝜔𝜔𝑎𝑎  ≪  𝜔𝜔𝑠𝑠)   (10) 

 

Then, the impedance ZCo(jω) at any frequency ω is obtained by means of (11). This makes possible to determine the 

impedance of the motional branch Zm(jω) from the measurement of the total impedance Zx(jω) by means of the 

compensation of the effect of Co by using (9). 

 

𝑍𝑍𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗) ≅   𝜔𝜔𝑎𝑎
𝜔𝜔

· 𝑍𝑍𝐶𝐶𝐶𝐶(𝑗𝑗𝜔𝜔𝑎𝑎)  (11) 

 

 

3.4. Sinusoidal signal characterization of V1 and V2: sine wave fitting algorithm. 

 

The estimation of QCM electrical impedance Zxe(jω) is obtained by measuring the excitation voltage V1(jω), and the 

output voltage V2(jω) at different frequencies, as shown in (6). Therefore, obtaining an accurate impedance value 

depends directly on the precise measurement of the amplitude and phase of these voltage signals. Moreover, this 

measurement is especially difficult near the resonance frequency where the signal amplitudes can be very small. 



 

There are many methods to estimate the parameters of a sinusoidal digitized signal, i.e., amplitude, phase, 

frequency and DC component [41]-[44]. Sedlack et al. [45] compare these methods and concluded that the sine-

wave-fit methods are the best ones from the point of view of both measurement bias and uncertainty. The sine-

wave-fit technique is based on the least-square error (LSE) between the measured signal and an ideal sinusoid. There 

are standardized algorithms for the estimation of three parameters [46] (amplitude, frequency and phase) and four 

parameters [47] (amplitude, frequency, phase and DC component). 

 

With reference to the 3-parameter algorithm, the frequency estimation is inaccurate and the DC component is not 

taken into account. The 4-parameter method overcomes these limitations, however, if applied separately on two 

different signals, the 4-parameter method will result in the estimation of two different frequencies, despite the fact 

that the two records are from signals of the same frequency. Some authors [48] suggested to solve this problem by 

applying the new 7-parameter sine-fitting algorithm (7PSF). This algorithm uses both records to determine all 

parameters of sine waves. If the 7PSF algorithm is applied, then only estimated frequency is obtained for both 

signals, V1 and V2. This is the major advantage of this method. Also, obtained results have shown that the sine-fitting 

method compared to the zero-crossing and peak detection methods achieves better results without an excessive 

associated computational burden. 

 

So, according to the 7PSF algorithm, the signals to be acquired are: 

 

                                                     𝑉𝑉1(𝑡𝑡) =  𝑉𝑉10𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜑𝜑1) + 𝑉𝑉1𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

              𝑉𝑉2(𝑡𝑡) =  𝑉𝑉20𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜑𝜑2) + 𝑉𝑉2𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜                 (12) 

 

where f is the frequency, Vi0 is the amplitude, Vioffset is the DC component and ϕi is the phase angle, for i equal to 1 

and 2. 

 

Both expressions can be expanded as 

 

                                                          𝑉𝑉1(𝑡𝑡) =  𝐴𝐴1𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝜋𝜋) + 𝐵𝐵1𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝜋𝜋) + 𝐶𝐶1 

                                   𝑉𝑉2(𝑡𝑡) =  𝐴𝐴2𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝜋𝜋) + 𝐵𝐵2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝜋𝜋) + 𝐶𝐶2                                    (13) 

 

being Ai, Bi and Ci are constant components that can be related to Vi0, ϕi, and Vioffset. 

 

The two sine signals, V1(t) and V2(t) are equally-spaced sampled. The first M samples of the first channel are: y11, 

y12,…,y1M. The same number of samples for the second channel are: y21, y22,…,y2M. When M is higher than 4 the 

system is overdetermined and the least square method is applied in order to obtain a unique solution for all the 

parameters Ai, Bi, Ci and f. The proposed method [49] obtains these parameters by minimizing the residual least-

square error ε as given by (14). 



 

𝜀𝜀 =  � [𝑦𝑦1𝑛𝑛 − 𝐴𝐴1𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝑡𝑡𝑛𝑛) − 𝐵𝐵1𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑡𝑡𝑛𝑛) − 𝐶𝐶1𝑘𝑘]2
𝑀𝑀

𝑛𝑛=1
 

     +� [𝑦𝑦2𝑛𝑛 − 𝐴𝐴2𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝑡𝑡𝑛𝑛) − 𝐵𝐵2𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑡𝑡𝑛𝑛) − 𝐶𝐶2𝑘𝑘]2
𝑀𝑀

𝑛𝑛=1
 

 

Where k is the iteration index. As a final result we get a unique constant set {A1k, B1k, C1k, f, A2k, B2k, C2k}. 

 

4. Description of the measurement system. 

 

4.1. Block diagram of the measurement system. 

 

The measurement system has been designed to monitor the impedance changes of an array of QCM sensors when 

they are placed inside of a multi-well Petri plate with liquid samples. Results are presented and stored in a personal 

computer. A graphic user interface permits to easily control and configure the measurement tests and to store the 

results in a file. 

 

Fig. 4 shows the system architecture. It consists of four blocks in order to provide high versatility: the sensor 

interface & analog front end, the data acquisition & communication block, the signal generation block and the 

control block. The architecture is very flexible and fully scalable. Therefore, new measurement channels can be easily 

added by expanding the data acquisition and signal generation blocks. Also, the cost of the whole system can be 

drastically reduced by multiplexing the inputs of the acquisition block and the outputs of the signal generation block 

if the measurement speed requirement is not too restrictive. 

 

 
 

Fig. 4. Block diagram of the measurement system. 
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4.2. Sensor interface and analog front end. 

 

This block includes the QCM interface and signal conditioning circuits that are responsible for properly obtaining the 

voltage and current of each QCM sensor in order to calculate its impedance at every excitation frequency. Fig. 5 

shows the electrical circuit schematics for each measurement channel. 

 

 
 

Fig. 5. Sensor interface and signal conditioning circuit. 

 

As explained in section 3.1, this circuit is based on an auto-balancing impedance bridge in order to obtain the 

electrical impedance of the device by means of (6). The voltage V1 is generated by a DDS and then applied to one of 

the terminals of the QCM sensor by means of a buffer stage (op-amp on the left) in order to prevent loading effects 

and to avoid interfering the desired operation. The other QCM terminal is virtually connected to ground by means of 

the op-amp on the right. This second op-amp also converts the QCM current into an equivalent voltage, V2. The use 

of AD8063 operational amplifier features a large gain-bandwidth product that makes it suitable for our application. 

In addition, it has an input that enables or disables each measurement channel if required by putting the output at 

high impedance state. The system selects which measurement channel is active by enabling its corresponding pin 

and puts the rest of channel outputs at high impedance. The control of the enable pin of the different op-amps 

allows multiplexing several measurement inputs with a single acquisition channel and avoiding the use of an analog 

multiplexer or analog switches. 

 

 

4.3. Signal generation.  

 

A Direct Signal Synthesizer (DDS) is used to generate the frequency-sweep sinusoidal signal to perform the 

impedance measurement in the frequency range of interest. The DDS architecture allows a simple and low-cost 

implementation of an arbitrary waveform generator. The AD9959 synthesizer from Analog Devices has been used for 

this purpose. It is composed of four different channels which permit to perform several measurements in parallel. 



Each channel is able to generate an output signal with a frequency up to 200 MHz with a resolution of 0.23 Hz, which 

is much more than what is required by the system. 

 

4.4. Data acquisition & communication.  

 

Two A/D converters are used to capture the analog signals corresponding to the voltage and the current of the QCM 

sensor for each auto-balancing impedance bridge, i.e., each measurement channel. Depending on the number of 

measurement channels and the measurement speed requirements, several channels can be multiplexed in order to 

use only a single A/D converter for them. The AD9633 A/D converter from Analog Devices has been chosen. This is a 

12-bit converter with a sampling rate up to 125 MSPS. As the QCM sensor resonance frequencies are within the 

range from 5 to 10 MHz, its features permit to accurately acquire the signal parameters, and then to calculate the 

amplitude and phase of the impedance at each frequency. The blocks of digital data from the A/D converters are 

transferred to different FIFO included in a Xilinx Virtex-4 FPGA device. Finally, data is sent to the PC through the USB 

communication bus. 

 

 

4.5. Control. 

 

Three main tasks must be controlled in order to perform the impedance measurements: the enable and disable of 

the QCM sensor input channels, the configuration of the DDS device in order to set up the signal generator, and the 

configuration of the A/D conversion and the supervision of data communication. A PIC32 microcontroller from 

Microchip carries out the first two tasks and the later one is assigned to the Xilinx Virtex-4 FPGA. 

 

In addition, the temperature control of the measurement environment is a critical issue during the monitoring of 

biofilm growth. For this reason, the multi-well Petri plate with the QCM sensors is placed into a thermostatic 

chamber. Three different NTC temperature sensors are used to monitor the temperature at three different locations. 

Each temperature sensor has a conditioning circuit that linearizes and prepares the measurement in order to be 

acquired with the internal A/D converters of the PIC32 microcontroller. The control of the temperature in the 

thermostatic chamber is achieved by means of the activation/deactivation of a heater controlled from the 

microcontroller. 

 

 

4.6. Calibration and measurement procedure. 

 

As explained in section 3, raw data obtained from the acquisition of voltage and current at the device under test 

must be processed accordingly in order to get good results in the QCM resonance frequency and resistance at 

resonance. The first step is the use of a 7PSF-algorithm to extract the amplitude, phase, DC component and 

frequency of the voltage and current signals. The frequency is also obtained from the measurements because it 



provides a better accuracy than when using the frequency input parameter of the DDS. The measured impedance 

using the self-balance impedance bridge includes some parasitic components, such as the DC blocking capacitors or 

the resistance R1. In addition, there is an error due to the non-ideal behaviour of the operational amplifiers. In order 

to minimise all these effects, a calibration procedure has been developed. 

 

The accuracy in the extraction of the impedance resonance parameters depends on the cancellation of the electrical 

capacitance C0 of the QCM sensor. The estimation of the value of C0 is performed by means of the impedance 

measurement at a frequency far below the resonance frequency where the impedance is only contributed by this 

capacitance, as explained in section 3.3. Once the capacitor value has been estimated, its effect is subtracted from 

the measured impedance, leaving only the impedance of the QCM motional branch. 

 

Finally, an iterative procedure, as depicted in Fig. 6, has been developed to determine the QCM sensor parameters 

at series resonance: resonance frequency fs and impedance at resonance Rm in both magnitude and phase. In order 

to reduce the measurement time per channel, the frequency range is progressively narrowed around the resonance 

at each iteration while maintaining the number of steps in the frequency sweep. First sweeps are needed to know 

where the resonance is approximately, while the following sweeps are limited to the frequency range around the 

resonance, so improving the accuracy. This procedure reduces the computational burden of the system due to the 

number of measurements and calculations carried out, what permits the continuous monitoring of resonance 

parameters in multiple channels. 

 

 
 

Fig. 6. Procedure for the determination of the QCM resonance parameters. 

 

After five iterations, five points around the resonance are determined. Then, measurements of the impedance 

magnitude and phase in the same five points are repeated and are averaged. From the measurements averaged 

previously, regression curves are fitted. In addition, the mean square error is determined and compared with a 

threshold in order to validate the results obtained. For the impedance magnitude, a second order polynomial is used 

to perform a parabolic fitting. For the impedance phase, a first order polynomial is used to perform a straight fitting. 

Then, the minimum of impedance is found and the corresponding phase and frequency are also determined. These 



values correspond to the resonance parameters: resonance frequency and impedance magnitude and phase at 

resonance. A flow chart of the measurement procedure is shown in Fig. 7.  

 

 
Fig. 7. Flow chart of the measurement procedure. 

 

 

4.7. Software. 

 

A software application has been developed in LabVIEW in order to provide the graphical user interface and to 

control the measurement system. The program runs on a personal computer that communicates with the system via 

USB. The graphical user interface permits the user to interact with the system setting the main parameters of the 

experiments as shown in Fig. 8: number of measurement channels, total measurement duration, time step, 

frequency range and thermostatic chamber temperature. It also permits to perform the calibration of the system. 

Once the user selects the experiment parameters, this information is sent to the control unit of the measurement 

system that adjusts the setting of the ADC and DDS modules. The results of the experiment are shown in real time 

for each channel as in Fig. 8. 



 

 

 
Fig. 8. Graphical user interface: configuration (up) and results (bottom) windows. 

 

5. Results. 

 

In order to validate the correct operation of the developed multichannel system, the QCM series resonance 

frequency and resistance at resonance was measured with the QCM sensor in contact with three different media: 

air, different glycerol aqueous solutions and, the last one, a culture with microorganisms in order to monitor 

qualitatively the biofilm growth. 

 



A prototype of the system is presented in Fig. 9 where the different modules are pointed out. 

 

 
Fig. 9. Experimental prototype of the system. 

 

A ½” QCM crystal manufactured from ICM (International Crystal Manufacturing, ref. 151527-5) was chosen to 

perform the experimental measurements. The AT-cut quartz crystal discs have a resonance frequency of 5 MHz, a 

resistance at resonance of 10 Ω in air and gold plated titanium electrodes (Fig. 10a). 

 

          
 

Fig. 10. Image of the ICM ½” QCM crystal (a) and ABS holder (b) 

 

For a correct use of the QCM sensors, the crystals must be mounted in holders in such a way that only one of the 

crystal sides is exposed to the medium to be measured, and the other one is maintained isolated (Fig. 10b). In our 

application, the use of traditional commercial holders is not suitable as they are too big and expensive. Our holder 

design is based on one-piece compact construction that houses the quartz crystal maintaining the back side without 

any contact or acoustic loading. Silicone paste is used to provide the required sealing to prevent contact between 

the internal side of the crystal and the medium. The holder is made of ABS (Acrylonitrile Butadiene Styrene) polymer, 

by means of a 3D printer. This holder design provides an important advantage with respect commercial holders 

because it allows our QCM sensors to be immersed into the microorganism culture in a vertical position. Thus, unlike 

an horizontal position at the cell bottom, only the effect of the biofilm attached to the electrode is measured and 

not the material deposited by gravity on the culture cell bottom [50]. 

 

 

a) b) 



 

5.1. Resonance measurements of QCM sensors in air. 

 

Measurements of the QCM sensor resonance parameters in air have been performed in order to verify the proper 

operation of the implemented measurement system and to determine its accuracy. Results have been compared 

with the ones obtained by using a commercial Agilent 4294A precision impedance analyser. The Agilent 4294A 

impedance analyser performs precise electrical impedance measurements in the frequency range from 40 Hz to 

110 MHz with a resolution of 1 mHz. Its specified four-terminal impedance measurement accuracy ranges from 0.1% 

to 1% in the ranges of interest in frequency (from 1 to 10 MHz) and impedance (from 1 Ω to 10 kΩ) for our 

application. The measurement range of the developed system is from 1 to 10 MHZ but it could be extended until 200 

MHz with a resolution of 0.23 Hz and the impedance accuracy is 2% in the measurement range taking the 4294A 

analyser as reference. 

 

Table II and Table III present the series resonance frequency and the resistance at resonance measurements of a set 

of eleven QCM sensors placed in a twelve empty well Petri plate. The remaining well is used for reference purposes. 

Sensors have been placed inside a thermostatic chamber at 37 °C in order to achieve more stable measurements. 

 

QCM sensor 

number 

Resonance frequency fs (MHz) Absolute error 

(Hz) 

Relative error 

(%) Agilent 4294A Developed 

system 

1 4.9965  4.996545  45  0.0009  

2 4.9956  4.995822  222  0.0050  

3 4.9956  4.995615  15  0.0003  

4 4.9962  4.996396  196  0.0040  

5 4.9938  4.993920  120  0.0030  

6 4.9938  4.993958  158  0.0040  

7 4.9959  4.996123  223  0.0050  

8 4.9932  4.993374  174  0.0040  

9 4.9947  4.994907  207  0.0050  

10 4.9929  4.992931  31  0.0007  

11 4.9926  4.992726  126  0.0030  

 

Table II. Series resonance frequency measurements of the QCM sensors in air at 37 °C. 

 

 

 

 

 



QCM sensor 

number 

Series resonance resistance 

Rm (Ω) 

Absolute error  

(Ω) 

Relative error 

(%) 

Agilent 4294A Developed 

system 

1 416.2  416.0  0.2  0.05 

2 618.7  617.9  0.8  0.20 

3 383.4  379.7  3.7  1.00 

4 342.4  338.3  4.1  2.00 

5 548.4  550.6  2.2  0.40 

6 446.2  442.8  3.4  0.80 

7 791.4  785.8  5.6  0.70 

8 772.4  765.6  6.8  0.90 

9 308.8  302.6  6.2  2.00 

10 498.6  492.3  6.3  2.00 

11 708.3  707.8  0.5  0.07 

 

Table III. Resistance at resonance measurements of the QCM sensors in air at 37 °C. 

 

 

Table II shows series resonance frequency results obtained with Agilent 4294A impedance analyser and the 

developed multichannel system. Comparing obtained results, no significant differences between both systems are 

observed and the relative error is less than 0.005%. 

 

Similarly, Table III compares resistance at resonance measurements obtained with the Agilent 4294A impedance 

analyser and the developed multichannel system. In this case, the relative error between both systems is less than 

2% for the worst case.  

 

5.2. Resonance measurements of QCM sensors immersed in different glycerol aqueous solutions 

 

Different aqueous solutions of glycerol at different concentrations (0%, 10%, 20%, 30%, 40%, 50% and 60%) have 

been prepared in order to quantify variations of the QCM sensor resonance parameters in different liquid media. 

The objective is to demonstrate the effectiveness of the system when measuring QCM resonance parameters when 

they are loaded by high viscous media as occurs in our application. Then, for every different solution, ten wells of a 

Petri plate were filled with the same amount (3.8 ml) of glycerol solution, and a QCM sensor was immersed in every 

well of the Petri plate. The whole system was placed inside a thermostatic chamber at 38 °C and, once temperature 

stability was reached, the resonance parameters of every sensor were measured. 

 



Fig. 11 shows the series resonance frequency shift measurements in binary mixtures of water-glycerol at different 

concentrations of one of the QCM sensors. Results were compared with the theoretical ones provided by the 

Kanazawa equation.  

 

 
 

Fig. 11. Series resonance frequency shift in binary mixtures of water-glycerol thermostated to 38 °C. Red line corresponds to 

the values obtained by applying the Kanazawa theoretical equation. Blue line corresponds to the measured results. 

 

From data represented in Fig. 11, it is possible to calculate the accuracy of the series resonance frequency 

measurements, related to the expected values according to the Kanazawa theoretical equation. In this case, the 

relative error is less than 3% for the worst case. This proves that experimental results obtained are in good 

agreement with the theoretical behaviour and it demonstrates the effectiveness of the Co compensation. 

 

Similarly, Fig. 12 shows the resistance at resonance shift measurements in binary mixtures of water-glycerol at 

different concentrations, for the same QCM sensor. Again, results obtained are in good agreement with the 

theoretical behaviour provided by the Kanazawa equation. 

 

 
 

Fig. 12 Resistance at resonance shift in binary mixtures of water-glycerol thermostated to 38 °C. Red line corresponds to the 

values obtained by applying the Kanazawa theoretical equation. Blue line corresponds to the measured results. 

 

Again, from data represented in Fig. 12, it is possible to calculate the accuracy of the resistance at resonance 

measurements, related to the expected values according to the Kanazawa theoretical equation. According this, the 

relative error is about 3.5% for the worst case, which proves the good agreement with the theoretical values. 



 

These results demonstrate that the system properly compensates the effect of the viscous losses in the extraction of 

the impedance resonance parameters. 

 

5.3. Biofilm formation monitoring. 

 

Finally, an experiment with real microorganisms has been carried out in order to perform a qualitative measurement 

of the biofilm growth. For this purpose, four wells of the measurement system were filled with a culture containing 

the microorganisms and a QCM sensor was immersed in every well. The bacteria chosen for the experiment was the 

Staphylococcus epidermidis. The selection of this type of bacteria was due to its regular presence in the 

environment, the ability to quickly form a robust biofilm that make it suitable for the experimentation, and the large 

number of experimental studies that have been done with this microorganism. 

 

Fig. 13 presents the results of one measurement channel. It shows the relative shift over time of the resonance 

frequency and the resistance at resonance with respect to the first measurement (frequency and resistance at the 

beginning of the experiment). 

 

 

 

 

 
Fig. 13. Resistance at resonance shift (above) and resonance frequency shift (below) of the experiment. 
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The obtained results show how the series resonance frequency decreases and the resistance at resonance increases 

over the time. This means that there are losses in the QCM sensors and they are directly related with the biofilm 

formation on the crystal surface [11]. 

 

 

6. Conclusions 

 

This work describes a new electronic multichannel instrument for continuous monitoring of bacterial cultures in 

order to know when the cell self-assembly processes produce the biofilm formation and subsequent growth. Also, it 

is capable to detect the inhibition of these biofilms in the case of the use of biocidal agents such as antibiotics. 

 

Each measurement channel is based on a QCM sensor and the measurement of its electrical impedance to obtain 

both its series resonance frequency and its resistance at this frequency, which are correlated with the viscoelastic 

properties of the medium in physical contact with it. This technique allows the bacterial process monitoring without 

interrupting it unlike other classical techniques where it is necessary to extract a sample of the culture. The use of an 

auto-balancing impedance bridge, a precise DDS generator of the excitation signal, and a sine wave fitting algorithm 

to determine the QCM voltage and current, permit a very accurate electrical impedance measurement in an 

affordable, compact, ease-of-use and portable instrument compared with other alternatives. The commercial Agilent 

4294A precision impedance analyser has been used as reference in order to validate the electrical impedance 

measurements. A 2% instrument accuracy in the impedance measurement is achieved. Also, the automatic 

compensation of the QCM static electrical capacitance and the frequency response of the measurement circuit 

permits to achieve a very accurate determination of resonance parameters in heavily loaded QCM as occurs with 

biofilms. Results obtained in the measurements of binary mixtures water-glycerol show excellent agreement with 

the theoretical behaviour demonstrating the effectiveness of this compensation. Experiments with real 

microorganisms have also demonstrated that the frequency resolution and the impedance accuracy of the 

instrument permit a qualitative monitoring of the biofilm formation and growth. Although the most relevant 

information in biofilm processes is obtained with the current instrument, it is expected that it will be able to quantify 

the thickness of the biofilm. Future works are planned in order to correlate the measurement results of bacteria 

cultures with the quantity of biofilm adhered to the QCM. 

 

Nevertheless, special attention must be paid to the influence of the temperature in both the bacterial process itself 

and the signal generation electronic circuits. In order to be able to develop a future commercial prototype, further 

studies related to the temperature control and its effects in the measurement results in real biofilm samples need to 

be carried out. 

 

In addition, the scalability and flexibility of the system hardware make it also interesting for new applications 

requiring on-line electrical impedance analysis or electrical resonance measurement. 
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