11 research outputs found

    Relação entre as adipocinas, inflamação e reatividade vascular em controles magros e pacientes obesos com síndrome metabólica

    Get PDF
    PURPOSE: Metabolic syndrome is an important risk factor for cardiovascular disease. Adipokines interfere with insulin action and endothelial cell function. We investigated the relationship among adipokines, metabolic factors, inflammatory markers, and vascular reactivity in obese subjects with metabolic syndrome and lean controls. METHODS: Cross-sectional study of 19 obese subjects with metabolic syndrome and 8 lean volunteers evaluated as controls. Vascular reactivity was assessed by venous occlusion pletysmography measuring braquial forearm blood flow (FBF) and vascular resistance (VR) responses to intra-arterial infusions of endothelium-dependent (acetylcholine-Ach) and independent (sodium nitroprusside-SNP) vasodilators. Blood samples were obtained to evaluate C reactive protein (CRP), plasminogen activator inhibitor 1 (PAI-1), fibrinogen, adiponectin, resistin, and lipid profile. Patients were classified with regard to insulin resistance through the HOMA-IR index. RESULTS: PAI-1, CRP and fibrinogen were higher and adiponectin was lower in metabolic syndrome subjects compared to controls. Metabolic syndrome subjects had impaired vascular reactivity. Adiponectin and PAI-1 were associated with insulin, HOMA-IR, triglycerides, and HDLc; and resistin with CRP. Adiponectin was associated with VR after Ach in the pooled group and resistin with D FBF after Ach in the metabolic syndrome group. CONCLUSION: Metabolic syndrome subjects exhibited low levels of adiponectin and high levels of CRP, fibrinogen, and PAI-1. Adiponectin and PAI-1 correlated with insulin resistance markers. Adiponectin and resistin correlated with vascular reactivity parameters. An adipocyte-endothelium interaction might be an important mechanism of inflammation and vascular dysfunction.A Síndrome Metabólica é um importante fator de risco para doenças cardiovasculares. As adipocinas interferem com a ação da insulina e com a função endotelial. OBJETIVO: Investigar a relação entre adipocinas, fatores metabólicos, marcadores inflamatórios e reatividade vascular para inferência da função endotelial em pacientes obesos e controles magros. MATERIAL E MÉTODO: Estudo transversal de 19 pacientes obesos com Síndrome Metabólica e 8 controles magros. A reatividade vascular foi avaliada pela pletismografia de oclusão venosa medindo o fluxo sangüíneo da artéria braquial e sua resistência vascular a partir de infusões intra-arteriais de vasodilatadores endotélio-dependente (acetilcolina) e endotélio-independente (nitroprussiato de sódio). Foram também avaliados no sangue a proteína C reativa (PCR), o inibidor do ativador do plasminogênio 1 (PAI-1), fibrinogênio, adiponectina, resistina e o perfil lipídico. Os pacientes foram classificados quanto à resistência insulínica pelo índice HOMA-IR. RESULTADO: PAI-1, PCR e fibrinogênio apresentaram valores mais altos e a adiponectina mais baixos para os pacientes com Síndrome Metabólica do que com os controles. Pacientes com Síndrome Metabólica apresentaram prejuízo da reatividade vascular. A adiponectina e PAI-1 estiveram associadas à insulina, HOMA-IR, triglicerídeos e HDLc; e resistina com o PCR. Adiponectina esteve associada com a resistência vascular e a resistina com o fluxo sangüíneo depois da acetilcolina em pacientes com Síndrome Metabólica. CONCLUSÃO: Pacientes com Síndrome Metabólica exibiram baixas concentrações sangüíneas de adiponectina e altos níveis de PCR, fibrinogênio e PAI-1. Adiponectina e PAI-1 correlacionaram com os marcadores da resistência insulínica. Adiponectina e resistina correlacionaram com a reatividade vascular. A interação adipócito-endotélio vascular pode ser um importante mecanismo de inflamação e disfunção vascular

    Body composition study by dual-energy x-ray absorptiometry in familial partial lipodystrophy: finding new tools for an objective evaluation (vol 4, pg 40, 2012)

    Get PDF
    Rio de Janeiro & Catholic Univ, Inst Estadual Diabet & Endocrinol, Metab Unit, Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Nutrol, Rio de Janeiro, RJ, BrazilUniversidade Federal de São Paulo, Div Endocrinol, São Paulo, SP, BrazilInst Estadual Diabet & Endocrinol, BR-20211340 Rio de Janeiro, RJ, BrazilUniversidade Federal de São Paulo, Div Endocrinol, São Paulo, SP, BrazilWeb of Scienc

    Relationship between adipokines, inflammation, and vascular reactivity in lean controls and obese subjects with metabolic syndrome

    No full text
    PURPOSE: Metabolic syndrome is an important risk factor for cardiovascular disease. Adipokines interfere with insulin action and endothelial cell function. We investigated the relationship among adipokines, metabolic factors, inflammatory markers, and vascular reactivity in obese subjects with metabolic syndrome and lean controls. METHODS: Cross-sectional study of 19 obese subjects with metabolic syndrome and 8 lean volunteers evaluated as controls. Vascular reactivity was assessed by venous occlusion pletysmography measuring braquial forearm blood flow (FBF) and vascular resistance (VR) responses to intra-arterial infusions of endothelium-dependent (acetylcholine-Ach) and independent (sodium nitroprusside-SNP) vasodilators. Blood samples were obtained to evaluate C reactive protein (CRP), plasminogen activator inhibitor 1 (PAI-1), fibrinogen, adiponectin, resistin, and lipid profile. Patients were classified with regard to insulin resistance through the HOMA-IR index. RESULTS: PAI-1, CRP and fibrinogen were higher and adiponectin was lower in metabolic syndrome subjects compared to controls. Metabolic syndrome subjects had impaired vascular reactivity. Adiponectin and PAI-1 were associated with insulin, HOMA-IR, triglycerides, and HDLc; and resistin with CRP. Adiponectin was associated with VR after Ach in the pooled group and resistin with D FBF after Ach in the metabolic syndrome group. CONCLUSION: Metabolic syndrome subjects exhibited low levels of adiponectin and high levels of CRP, fibrinogen, and PAI-1. Adiponectin and PAI-1 correlated with insulin resistance markers. Adiponectin and resistin correlated with vascular reactivity parameters. An adipocyte-endothelium interaction might be an important mechanism of inflammation and vascular dysfunction

    Relação entre as adipocinas, inflamação e reatividade vascular em controles magros e pacientes obesos com síndrome metabólica

    No full text
    PURPOSE: Metabolic syndrome is an important risk factor for cardiovascular disease. Adipokines interfere with insulin action and endothelial cell function. We investigated the relationship among adipokines, metabolic factors, inflammatory markers, and vascular reactivity in obese subjects with metabolic syndrome and lean controls. METHODS: Cross-sectional study of 19 obese subjects with metabolic syndrome and 8 lean volunteers evaluated as controls. Vascular reactivity was assessed by venous occlusion pletysmography measuring braquial forearm blood flow (FBF) and vascular resistance (VR) responses to intra-arterial infusions of endothelium-dependent (acetylcholine-Ach) and independent (sodium nitroprusside-SNP) vasodilators. Blood samples were obtained to evaluate C reactive protein (CRP), plasminogen activator inhibitor 1 (PAI-1), fibrinogen, adiponectin, resistin, and lipid profile. Patients were classified with regard to insulin resistance through the HOMA-IR index. RESULTS: PAI-1, CRP and fibrinogen were higher and adiponectin was lower in metabolic syndrome subjects compared to controls. Metabolic syndrome subjects had impaired vascular reactivity. Adiponectin and PAI-1 were associated with insulin, HOMA-IR, triglycerides, and HDLc; and resistin with CRP. Adiponectin was associated with VR after Ach in the pooled group and resistin with D FBF after Ach in the metabolic syndrome group. CONCLUSION: Metabolic syndrome subjects exhibited low levels of adiponectin and high levels of CRP, fibrinogen, and PAI-1. Adiponectin and PAI-1 correlated with insulin resistance markers. Adiponectin and resistin correlated with vascular reactivity parameters. An adipocyte-endothelium interaction might be an important mechanism of inflammation and vascular dysfunction.A Síndrome Metabólica é um importante fator de risco para doenças cardiovasculares. As adipocinas interferem com a ação da insulina e com a função endotelial. OBJETIVO: Investigar a relação entre adipocinas, fatores metabólicos, marcadores inflamatórios e reatividade vascular para inferência da função endotelial em pacientes obesos e controles magros. MATERIAL E MÉTODO: Estudo transversal de 19 pacientes obesos com Síndrome Metabólica e 8 controles magros. A reatividade vascular foi avaliada pela pletismografia de oclusão venosa medindo o fluxo sangüíneo da artéria braquial e sua resistência vascular a partir de infusões intra-arteriais de vasodilatadores endotélio-dependente (acetilcolina) e endotélio-independente (nitroprussiato de sódio). Foram também avaliados no sangue a proteína C reativa (PCR), o inibidor do ativador do plasminogênio 1 (PAI-1), fibrinogênio, adiponectina, resistina e o perfil lipídico. Os pacientes foram classificados quanto à resistência insulínica pelo índice HOMA-IR. RESULTADO: PAI-1, PCR e fibrinogênio apresentaram valores mais altos e a adiponectina mais baixos para os pacientes com Síndrome Metabólica do que com os controles. Pacientes com Síndrome Metabólica apresentaram prejuízo da reatividade vascular. A adiponectina e PAI-1 estiveram associadas à insulina, HOMA-IR, triglicerídeos e HDLc; e resistina com o PCR. Adiponectina esteve associada com a resistência vascular e a resistina com o fluxo sangüíneo depois da acetilcolina em pacientes com Síndrome Metabólica. CONCLUSÃO: Pacientes com Síndrome Metabólica exibiram baixas concentrações sangüíneas de adiponectina e altos níveis de PCR, fibrinogênio e PAI-1. Adiponectina e PAI-1 correlacionaram com os marcadores da resistência insulínica. Adiponectina e resistina correlacionaram com a reatividade vascular. A interação adipócito-endotélio vascular pode ser um importante mecanismo de inflamação e disfunção vascular.433440Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Dipeptidyl peptidase-4 levels are increased and partially related to body fat distribution in patients with familial partial lipodystrophy type 2

    No full text
    Abstract Background Dipeptidyl peptidase-4 (DDP4) is an enzyme responsible for glucagon-like peptide-1 inactivation and plays an important role in glucose metabolism. Objective The aim of this study was to evaluate DPP4 levels in patients with familial partial lipodystrophy type 2 (FPLD2) and correlate it with body fat distribution. Methods Fourteen patients with FPLD2 were selected to participate in this study and matched to a healthy control group (n = 8). All participants had anthropometrical data registered. Body adiposity index (BAI) was used to evaluate fat distribution in this population. Body fat content and distribution were analyzed by dual X-ray absorptiometry (DXA). Biochemical exams, including DPP4 levels, were performed in all individuals. Results Despite the same body mass index, lipodystrophic patients had a significant lower hip (median 92.0 vs 94.5; p = 0.028), HDL cholesterol (42.6 ± 10.4 vs 66.1 ± 16.0; p < 0.01) and BAI (24.1 ± 2.8 vs 29.0 ± 3.7; p = 0.02), suggesting that BAI was able to catch differences in fat distribution between groups. On the other hand, patients with FPLD2 presented significant higher levels of insulin (median 11.2 vs 5.3; p = 0.015), triglycerides (184.9 ± 75.4 vs 89.1 ± 51.0; p < 0.01) and DPP4 (4.89 ± 0.92 vs 3.93 ± 1.08; p = 0.04). A trend toward an inverse statistical significance was observed between DPP4 levels and BAI (r = −0.38; p = 0.072). In the lipodistrophic group, a significant correlation was found between DPP4 levels and percentage of total body fat (r = 0.86; p = 0.0025) and android fat (r = 0.78; p = 0.014). Conclusions Patients with FPLD2 exhibit an increase in DDP4 levels in comparison to a healthy control group. The increase in the levels of this enzyme does not seem to be related to the diagnosis of diabetes and might be associated with an increase in central fat (estimated using BAI and measured using DXA). These results might be used to reinforce the concept that DDP4 is an adipokine related to central fat distribution

    Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations

    No full text
    Objective: Mutations in LMNA have been linked to diverse disorders called laminopathies, which display heterogeneous phenotypes and include diseases affecting muscles, axonal neurons, progeroid syndromes, and lipodystrophies. Among the lipodystrophies, LMNA mutations have been reported most frequently in patients with familial partial lipodystrophy (FPLD) of the Dunnigan variety; however, phenotypic heterogeneity in the pattern of body fat loss has been observed. in this study, we searched for LMNA mutations in patients with various forms of lipodystrophy.Design and methods: We studied 21 unrelated individuals with lipodystrophy. Subjects underwent a complete clinical evaluation and were classified as typical FPLD (n=12), atypical partial lipodystrophy (n=7), or generalized lipodystrophy (n=2). Molecular analysis of LMNA gene, analysis of body fat by dual-energy X-ray absorptiometry, and biochemical measurements were performed.Results: All patients with typical FPLD were found to carry LMNA mutations: seven patients harbored the heterozygous p. R482W (c.1444C>T), two patients harbored the p.R482Q (c.1445G>A), and two individuals harbored the novel heterozygous variant p.N466D (c.1396A>G), all in exon 8. Also, a homozygous p.R584H (c.1751 G>A) mutation in exon 11 was found. Among patients with atypical partial lipodystrophy, two of them were found to have LMNA mutations: a novel heterozygous p.R582C variation (c.1744 C>T) in exon 11 and a heterozygous substitution p.R349W (c.1045COT) in exon 6. Among patients with generalized lipodystrophy, only one harbored LMNA mutation, a heterozygous p.T10I (c.29C>T) in exon 1.Conclusions: We have identified LMNA mutations in phenotypically diverse lipodystrophies. Also, our study broadens the spectrum of LMNA mutations in lipodystrophy
    corecore