7 research outputs found

    Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.

    Get PDF
    Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task

    Clinical-grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning

    Get PDF
    Background and Aims: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and cheaper than molecular assays. But clinical application of this technology requires high performance and multisite validation, which have not yet been performed. Methods: We collected hematoxylin and eosin-stained slides, and findings from molecular analyses for MSI and dMMR, from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (n=6406 specimens) and validated in an external cohort (n=771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). Results: The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound 0.91, upper bound 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC curve of 0.95 (range, 0.92–0.96) without image-preprocessing and an AUROC curve of 0.96 (range, 0.93–0.98) after color normalization. Conclusions: We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using hematoxylin and eosin-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens

    Deep learning in cancer pathology: a new generation of clinical biomarkers

    No full text
    Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings

    Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning:A Systematic Study Across 23 Solid Tumor Types

    No full text
    In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways

    Author Correction:Pan-cancer image-based detection of clinically actionable genetic alterations (Nature Cancer, (2020), 1, 8, (789-799), 10.1038/s43018-020-0087-6)

    No full text
    In the version of this article initially published, the sample size (n = 794) was incorrect in Fig. 2f and Extended Data Fig. 4a,e; the correct sample size is ‘n = 397’. The sample size (n = 826) was also incorrect in Fig. 2h and Extended Data Fig. 4q,u; the correct sample size is ‘n = 413’. Also, the values in Supplementary Table 2, row ‘TCGA-HNSC’, column ‘Quality OK and tumor on slide’ (424, 424) were incorrect;the correct values are ‘457, 439’. The errors have been corrected in the HTML and PDF versions of the article
    corecore