281 research outputs found

    Observation of strong wavelength-shifting in the argon-tetrafluoromethane system

    Full text link
    We report the scintillation spectra of Ar-CF4_4 mixtures in the range 210-800~nm, obtained under X-ray irradiation for various pressures (1-5~bar) and concentrations (0-100%). Special care was taken to eliminate effects related to space charge and recombination, so that results can be extrapolated following conventional wisdom to those expected for minimum ionizing particles under the typical electric fields employed in gaseous instrumentation. Our study sheds light into the microscopic pathways leading to scintillation in this family of mixtures.Comment: Updated to match current journal submissio

    Scintillation of Ar/CF4_4 mixtures: glass-THGEM characterization with 1% CF4_4 at 1-1.5 bar

    Full text link
    Argon gas doped with 1% wavelength-shifter (CF4_4) has been employed in an optical time projection chamber (OTPC) to image cosmic radiation. We present results obtained during the system commissioning, performed with two stacked glass-THGEMs and an EMCCD camera at 1 bar. Preliminary estimates indicate that the combined optical gain was of the order of 106^6 (ph/e), producing sharp and high-contrast raw images without resorting to any filtering or post-processing. A first assessment of the impact of pressurization showed no change in the attainable gains when operating at 1.5 barComment: Added reference with DOI, fixed error with axis label in plo

    FAT-GEMs: (Field Assisted) Transparent Gaseous-Electroluminescence Multipliers

    Full text link
    The idea of implementing electroluminescence-based amplification through transparent multi-hole structures (FAT-GEMs) has been entertained for some time. Arguably, for such a technology to be attractive it should perform at least at a level comparable to conventional alternatives based on wires or meshes. We present now a detailed calorimetric study carried out for 5.9~keV X-rays in xenon, for pressures ranging from 2 to 10~bar, resorting to different geometries, production and post-processing techniques. At a reference voltage 5~times above the electroluminescence threshold (EEL,th0.7E_{EL,th}\sim0.7~kV/cm/bar), the number of photoelectrons measured for the best structure was found to be just 18\%~below that obtained for a double-mesh with the same thickness and at the same distance. The energy resolution stayed within 10\% (relative) of the double-mesh value. An innovative characteristic of the structure is that vacuum ultraviolet (VUV) transparency of the polymethyl methacrylate (PMMA) substrate was achieved, effectively, through tetraphenylbutadiene (TPB) coating of the electroluminescence channels combined with indium tin oxide (ITO) coating of the electrodes. This resulted in a ×2.25\times 2.25-increased optical yield (compared to the bare structure), that was found to be in good agreement with simulations if assuming a TPB wavelength-shifting-efficiency at the level of WLSE=0.74-1.28, compatible with expected values. This result, combined with the stability demonstrated for the TPB coating under electric field (over 20~h of continuous operation), shows great potential to revolutionize electroluminescence-based instrumentation

    On the determination of the interaction time of GeV neutrinos in large argon gas TPCs

    Full text link
    Next-generation megawatt-scale neutrino beams open the way to studying neutrino-nucleus scattering resorting, for the first time, to gaseous targets. This could lead to deeper knowledge of neutrino cross sections in the energy region between hundreds of MeV and a few GeV, of interest for the upcoming generation of long-baseline neutrino oscillation experiments. The challenge is, therefore, to accurately track and (especially) time the particles produced in neutrino interactions in large and seamless volumes down to few-MeV energies. We propose to accomplish this through an optically-read time projection chamber (TPC) filled with high-pressure argon and equipped with both tracking and timing functions. In this work, we present a detailed study of the time-tagging capabilities of such a device, based on end-to-end optical simulations that include the effect of photon propagation, photosensor response, dark-count rate and pulse reconstruction. We show that the neutrino interaction time could be reconstructed from the primary-scintillation signal with a precision in the range 1--2.5~ns (σ\sigma) for point-like deposits with energies down to 5~MeV, and well below 1~ns for minimum-ionizing particle tracks. A discussion on previous limitations towards such a detection technology, and how they can be realistically overcome in the near future thanks to recent developments in the field, is presented (particularly the strong scintillation yields recently reported for Ar/CF4_4 mixtures). The performance presented in our analysis seems to be well within reach of next-generation neutrino-oscillation experiments through the instrumentation of the proposed TPC with conventional reflective materials and a SiPM carpet behind a transparent cathode

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 ± 0.6 % and 84.1 ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES

    Get PDF
    Interactions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce a γ-ray flux from the Galactic Ridge. If the γ-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the γ-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region |l|<30°, |b|<2°. The expected background in the search region is estimated using an off-zone region with similar sky coverage. Neutrino signal originating from a power-law spectrum with spectral index ranging from Γ=1 to 4 is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at ∼96% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a spectral index 2.45 and a flux normalization [Formula presented] GeV cm s sr at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed γ-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν) for charged-current νe absorption on argon. In the context of a simulated extraction of supernova νe spectral parameters from a toy analysis, we investigate the impact of σ(Eν) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν) must be substantially reduced before the νe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(Eν) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν). A direct measurement of low-energy νe-argon scattering would be invaluable for improving the theoretical precision to the needed level

    Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

    Get PDF
    Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data

    Get PDF
    This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions
    corecore