148 research outputs found

    Observation of strong wavelength-shifting in the argon-tetrafluoromethane system

    Full text link
    We report the scintillation spectra of Ar-CF4_4 mixtures in the range 210-800~nm, obtained under X-ray irradiation for various pressures (1-5~bar) and concentrations (0-100%). Special care was taken to eliminate effects related to space charge and recombination, so that results can be extrapolated following conventional wisdom to those expected for minimum ionizing particles under the typical electric fields employed in gaseous instrumentation. Our study sheds light into the microscopic pathways leading to scintillation in this family of mixtures.Comment: Updated to match current journal submissio

    On the determination of the interaction time of GeV neutrinos in large argon gas TPCs

    Full text link
    Next-generation megawatt-scale neutrino beams open the way to studying neutrino-nucleus scattering resorting, for the first time, to gaseous targets. This could lead to deeper knowledge of neutrino cross sections in the energy region between hundreds of MeV and a few GeV, of interest for the upcoming generation of long-baseline neutrino oscillation experiments. The challenge is, therefore, to accurately track and (especially) time the particles produced in neutrino interactions in large and seamless volumes down to few-MeV energies. We propose to accomplish this through an optically-read time projection chamber (TPC) filled with high-pressure argon and equipped with both tracking and timing functions. In this work, we present a detailed study of the time-tagging capabilities of such a device, based on end-to-end optical simulations that include the effect of photon propagation, photosensor response, dark-count rate and pulse reconstruction. We show that the neutrino interaction time could be reconstructed from the primary-scintillation signal with a precision in the range 1--2.5~ns (σ\sigma) for point-like deposits with energies down to 5~MeV, and well below 1~ns for minimum-ionizing particle tracks. A discussion on previous limitations towards such a detection technology, and how they can be realistically overcome in the near future thanks to recent developments in the field, is presented (particularly the strong scintillation yields recently reported for Ar/CF4_4 mixtures). The performance presented in our analysis seems to be well within reach of next-generation neutrino-oscillation experiments through the instrumentation of the proposed TPC with conventional reflective materials and a SiPM carpet behind a transparent cathode

    Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

    Get PDF
    Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    Deep underground neutrino experiment (DUNE) near detector conceptual design report

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Searching for solar KDAR with DUNE

    Get PDF
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions

    Neutral Bremsstrahlung Emission in Xenon Unveiled

    Full text link
    [EN] We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Advanced Grant No. 339787-NEXT; the European Unions Framework Program for Research and Innovation Horizon 2020 (20142020) under Grant Agreements No. 674896, No. 690575, and No. 740055; the Ministerio de Economa y Competitividad and the Ministerio de Ciencia, Innovacin y Universidades of Spain under Grants No. FIS2014-53371-C04 and No. RTI2018-095979, the Severo Ochoa Program Grants No. SEV-2014-0398 and No. CEX2018-000867-S, and the Mara de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under Grants No. PROMETEO/2016/120 and No. SEJI/2017/011; the Portuguese FCT under Project No. PTDC/FIS-NUC/3933/2021 and under Project No. UIDP/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under Contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), No. DE-FG02-13ER42020 (Texas A&M), and No. DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington (USA). D. G.-D. acknowledges Ramon y Cajal program (Spain) under Contract No. RYC- 2015-18820. J. M.-A. acknowledges support from Fundacin Bancaria la Caixa (ID 100010434), Grant No. LCF/BQ/PI19/11690012. We would like to thank Lorenzo Muniz for insightful discussions on the subtleties of electron transport in gases.Henriques, C.; Amedo, P.; Teixeira, JMR.; González-Díaz, D.; Azevedo, C.; Para, A.; Martín-Albo, J.... (2022). Neutral Bremsstrahlung Emission in Xenon Unveiled. Physical Review X. 12(2):021005-1-021028-23. https://doi.org/10.1103/PhysRevX.12.021005021005-1021028-2312

    Deep underground neutrino experiment (DUNE) near detector conceptual design report

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components
    corecore