35 research outputs found
Transiently Undead Enterocytes Mediate Homeostatic Tissue Turnover in the Adult Drosophila Midgut
We reveal surprising similarities between homeostatic cell turnover in adult Drosophila midguts and undead apoptosis-induced compensatory proliferation (AiP) in imaginal discs. During undead AiP, immortalized cells signal for AiP, allowing its analysis. Critical for undead AiP is the Myo1D-dependent localization of the initiator caspase Dronc to the plasma membrane. Here, we show that Myo1D functions in mature enterocytes (ECs) to control mitotic activity of intestinal stem cells (ISCs). In Myo1D mutant midguts, many signaling events involved in AiP (ROS generation, hemocyte recruitment, and JNK signaling) are affected. Importantly, similar to AiP, Myo1D is required for membrane localization of Dronc in ECs. We propose that ECs destined to die transiently enter an undead-like state through Myo1D-dependent membrane localization of Dronc, which enables them to generate signals for ISC activity and their replacement. The concept of transiently undead cells may be relevant for other stem cell models in flies and mammals
Tissue Damage-Induced Intestinal Stem Cell Division in Drosophila
SummaryStem cell division is essential for tissue integrity during growth, aging, and pathogenic assaults. Adult gastrointestinal tract encounters numerous stimulations, and impaired tissue regeneration may lead to inflammatory diseases and cancer. Intestinal stem cells in adult Drosophila have recently been identified and shown to replenish the various cell types within the midgut. However, it is not known whether these intestinal stem cells can respond to environmental challenges. By feeding dextran sulfate sodium and bleomycin to flies and by expressing apoptotic proteins, we show that Drosophila intestinal stem cells can increase the rate of division in response to tissue damage. Moreover, if tissue damage results in epithelial cell loss, the newly formed enteroblasts can differentiate into mature epithelial cells. By using this newly established system of intestinal stem cell proliferation and tissue regeneration, we find that the insulin receptor signaling pathway is required for intestinal stem cell division
Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine
The initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc(+) in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis
Establishment of Rab-11 Induced Inflammatory Regulation as Therapeutic Targets in Colon Cancer Progression
Colon cancer is the third-deadliest cancer in the United States. Better understanding the cancer microenvironment/niches is crucial to the development of successful therapeutic targets. An RNAi screening using enterocyte specific driver was performed in Drosophila melanogaster intestine to search for niches regulating the intestine stem cell homeostasis. A small GTPase, Rab11 caused strong intestine stem cell (ISC) proliferation and tissue hyperplasia upon knockdown, due to increased production of inflammatory cytokines and growth factors. Increased inflammatory cytokines and proliferation were also observed in mouse Rab11a knockout (KO) intestine, indicating Rab11 regulatory role in the inflammation-induced hyperplasia is evolutionarily conserved and may also apply to human. We hypothesized that Rab11 is required to maintain cytokines in an appropriate state and its expression is down regulated in cancers. We investigated dextran sulfate sodium and chemical induced mouse colon cancer. Rab11 was largely reduced/absent in cancer tissues whereas well present in the normal tissue. We also investigated the correlation of Rab11 level and human cancer progression by immunofluorescence staining, and found that close to 50% and 40% of the cases studied had reduced Rab11 level by 20% and 30%, respectively. The greater the reduction is, the higher chance it is associated with more progressed cancer. Rab11, therefore, functions to suppress cancer progression and can be potentially developed towards a better diagnosis and treatment target for colon cancer. We will screen FDA approved drugs for ISC proliferation regulation, using a fly intestine tumor model established by expressing a human activated RAFGOFgene and a luciferase gene in the fly gut precursor cells. Selected drugs will be applied to test the Rab11 induced hyperplasia in fly, and further validated by mouse and human organoids derived from Rab11 KO mouse or human colon cancer tissues
(CCUG)n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions - (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening
Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design
Enterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. Development of vaccines against ETEC is very challenging due to the vast heterogeneity of the ETEC strains. An effective vaccines would have to be multicomponent to provide coverage of over ten ETEC strains with genetic variabilities. There is currently no vaccine licensed to prevent ETEC. Nanobodies are successful new biologics in treating mucosal infectious disease as they recognize conserved epitopes on hypervariable pathogens. Cocktails consisting of multiple nanobodies could provide even broader epitope coverage at a lower cost compared to monoclonal antibodies. Identification of conserved epitopes by nanobodies can also assist reverse engineering of an effective vaccine against ETEC. By screening nanobodies from immunized llamas and a naive yeast display library against adhesins of colonization factors, we identified single nanobodies that show cross-protective potency against eleven major pathogenic ETEC strains in vitro. Oral administration of nanobodies led to a significant reduction of bacterial colonization in animals. Moreover, nanobody-IgA fusion showed extended inhibitory activity in mouse colonization compared to commercial hyperimmune bovine colostrum product used for prevention of ETEC-induced diarrhea. Structural analysis revealed that nanobodies recognized a highly-conserved epitope within the putative receptor binding region of ETEC adhesins. Our findings support further rational design of a pan-ETEC vaccine to elicit robust immune responses targeting this conserved epitope
A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction
COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine
Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells
Excessive cell growth in Drosophila intestinal stem cells lacking TSC blocks further cell division
Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila
Intestinal stem cells (ISCs) in the adult Drosophila midgut can respond to tissue damage and support repair. We used genetic manipulation to increase the number of ISC-like cells in the adult midgut and performed gene expression profiling to identify potential ISC regulators. A detailed analysis of one of these potential regulators, the zinc-finger protein Charlatan, was carried out. MARCM clonal analysis and RNAi in precursor cells showed that loss of Chn function caused severe ISC division defects, including loss of EdU incorporation, phosphorylated histone 3 staining and expression of the mitotic protein Cdc2. Loss of Charlatan also led to a much reduced histone acetylation staining in precursor cells. Both the histone acetylation and ISC division defects could be rescued by the simultaneous decrease of the Histone Deacetylase 2. The overexpression of Charlatan blocked differentiation reversibly, but loss of Charlatan did not lead to automatic differentiation. The results together suggest that Charlatan does not simply act as an anti-differentiation factor but instead functions to maintain a chromatin structure that is compatible with stem cell properties, including proliferation