114 research outputs found

    Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard

    Get PDF
    A baseline study of hard-bottom zoobenthos in relation to environmental gradients in Kongsfjorden, a glacial fjord in Svalbard, is presented, based on collections from 1996 to 1998. The total species richness in 62 samples from 0 to 30 m depth along five transects was 403 species. Because 32 taxa could not be identified to species level and because 11 species are probably new to science, the total number of identified species was 360. Of these, 47 species are new for Svalbard waters. Bryozoa was the most diverse group. Biogeographic composition revealed features of both Arctic and sub-Arctic properties of the fauna. Species richness, frequency of species occurrence, mean abundance and biomass generally decreased towards the tidal glaciers in inner Kongsfjorden. Among eight environmental factors, depth was most important for explaining variance in the composition of the zoobenthos. The diversity was consistently low at shallow depths, whereas the non-linear patterns of species composition of deeper samples indicated a transitional zone between surface and deeper water masses at 15–20 m depth. Groups of “colonial” and “non-colonial” species differed in diversity, biogeographic composition and distribution by location and depth as well as in relation to other environmental factors. “Non-colonial” species made a greater contribution than “colonial” species to total species richness, total occurrence and biomass in samples, and were more influenced by the depth gradient. Biogeographic composition was sensitive to variation of zoobenthic characteristics over the studied depth range. A list of recorded species and a description of sampling sites are presented

    Thermodynamic Properties of Methanol in the Critical and Supercritical Regions

    Full text link

    Nematode and macrofaunal diversity in central Arctic Ocean benthos

    No full text
    Deep-sea diversity studies have revealed intriguing patterns on both local and regional scales, but there is insufficient evidence with which to evaluate these trends in the Arctic Ocean basin. We collected data on the diversity of benthic macrofauna and meiofaunal nematodes along two transects from the shelf margin to the North Pole. Contrary to prevailing paradigms, there was no change in diversity with depth between 1000 and 4273 in. There was a trend, however, toward reduced taxonomic richness for both macrofauna and nematodes with increasing latitude. Regional (beta-) diversity differences were not observed for nematodes, but significant contrasts in Bray-Curtis similarity-based community structure of macrofauna were seen between the Eurasian and Amerasian Basins, as well as between the Lomonosov and Mendeleev Ridges. Since fauna within the deep Arctic Ocean appear to represent a single species pool, we suggest that both local (alpha-) and beta-diversity may be determined by ecological processes in the Arctic, and are not the consequence of historical or evolutionary processes. Furthermore, insights gained from studies of benthic-pelagic coupling, known to play a significant role in determining benthic community structure and function at high latitudes, may also be useful in investigations of Arctic biodiversity. This model may be valuable in designing future studies of biodiversity, and for predicting potential impacts of climate change on diversity patterns

    Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments

    No full text
    In experimental mesocosms established at Solbergstrand, Oslofjord, Norway, organic enrichment was effected by the addition of powdered Ascophyllum nodosum (L.) Le Jol., in quantities equivalent to 50gC·m−2 and 200gC·m−2, to boxes of sublittoral soft sediment. After 56 days, the structure of the meiofaunal communities in these treatments was compared with that of the control boxes. At this time the meiofaunal communites at each level of organic enrichment were markedly different from each other and from that in the control sediment. The responses of the two major components of the meiofauna, however, were different. Although the abundance of nematodes was slightly reduced in the high dose treatment this was not accompanied by detectable changes in community structure. Harpacticoid copepods, on the other hand, increased significantly in abundance in the treatment boxes and showed a general trend towards increased dominance and decreased diversity with increasing levels of organic enrichment, although in the low dose treatment there was also an increase in the number of species present. It is also shown that the nematode/copepod ratio is unreliable as a biomonitoring tool and it is suggested that the differential responses in community structure between the nematode and copepod components of the meiofauna might be a better indication of stress at the community level

    Meroplankton abundance in the Northeast Water Polynya: Insights from oceanographic parameters and benthic abundance patterns

    No full text
    We investigated meroplankton (planktonic larvae of benthic organisms) abundance and distribution in the Northeast Water (NEW) Polynya, located on the northeast coast of Greenland, from July 15 to August 15, 1992. Meroplankton was present at all sites visited (0.03–84.83 individuals per m 3); at one station meroplankton comprised 8.28% of total zooplankton. Total meroplankton abundance was correlated with total zooplankton abundance and total benthic infaunal abundance but was not correlated with either microscopic carbon concentration or primary productivity. Examination of distribution data for barnacle nauplii and adults indicated that both adults and larvae were concentrated at the same locations. Patterns of distribution were also examined for stelleroid plutei, polychaete larvae and trochophores. There were distinct geographic patterns in total and class-specific meroplankton distributions, with maximal abundances occurring over the Belgica Bank and in the eastern regions of the Westwind Trough and minimal abundances in the Belgica Trough. The apparent control of meroplankton distribution by the hydrography of the region, coupled with the correlation between meroplankton, zooplankton and adult infaunal abundance, reinforces the hypothesis that hydrography plays a major role in controlling the distribution of biota in the NEW polynya (Ambrose and Renaud, 1995; Ashjian et al., 1995, 1997-this volume; Smith et al., 1995; Piepenburg et al., 1997-this volume)
    corecore