8 research outputs found

    REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft

    Get PDF
    Aircraft crew are one of the groups of radiation workers which receive the highest annual exposure to ionizing radiation. Validation of computer codes used routinely for calculation of the exposure due to cosmic radiation and the observation of nonpredictable changes in the level of the exposure due to solar energetic particles, requires continuous measurements onboard aircraft. Appropriate calibration of suitable instruments is crucial, however, for the very complex atmospheric radiation field there is no single reference field covering all particles and energies involved. Further intercomparisons of measurements of different instruments under real flight conditions are therefore indispensable. In November 2017, the REFLECT (REsearch FLight of EURADOS and CRREAT) was carried out. With a payload comprising more than 20 different instruments, REFLECT represents the largest campaign of this type ever performed. The instruments flown included those already proven for routine dosimetry onboard aircraft such as the Liulin Si-diode spectrometer and tissue equivalent proportional counters, as well as newly developed detectors and instruments with the potential to be used for onboard aircraft measurements in the future. This flight enabled acquisition of dosimetric data under well-defined conditions onboard aircraft and comparison of new instruments with those routinely used. As expected, dosimeters routinely used for onboard aircraft dosimetry and for verification of calculated doses such as a tissue equivalent proportional counter or a silicon detector device like Liulin agreed reasonable with each other as well as with model calculations. Conventional neutron rem counters underestimated neutron ambient dose equivalent, while extended-range neutron rem counters provided results comparable to routinely used instruments. Although the responses of some instruments, not primarily intended for the use in a very complex mixed radiation field such as onboard aircraft, were as somehow expected to be different, the verification of their suitability was one of the objectives of the REFLECT. This campaign comprised a single short flight. For further testing of instruments, additional flights as well as comparison at appropriate reference fields are envisaged. The REFLECT provided valuable experience and feedback for validation of calculated aviation doses.Postprint (published version

    Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities

    Get PDF
    Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy

    REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft

    Get PDF
    Aircraft crew are one of the groups of radiation workers which receive the highest annual exposure to ionizing radiation. Validation of computer codes used routinely for calculation of the exposure due to cosmic radiation and the observation of nonpredictable changes in the level of the exposure due to solar energetic particles, requires continuous measurements onboard aircraft. Appropriate calibration of suitable instruments is crucial, however, for the very complex atmospheric radiation field there is no single reference field covering all particles and energies involved. Further intercomparisons of measurements of different instruments under real flight conditions are therefore indispensable. In November 2017, the REFLECT (REsearch FLight of EURADOS and CRREAT) was carried out. With a payload comprising more than 20 different instruments, REFLECT represents the largest campaign of this type ever performed. The instruments flown included those already proven for routine dosimetry onboard aircraft such as the Liulin Si-diode spectrometer and tissue equivalent proportional counters, as well as newly developed detectors and instruments with the potential to be used for onboard aircraft measurements in the future. This flight enabled acquisition of dosimetric data under well-defined conditions onboard aircraft and comparison of new instruments with those routinely used. As expected, dosimeters routinely used for onboard aircraft dosimetry and for verification of calculated doses such as a tissue equivalent proportional counter or a silicon detector device like Liulin agreed reasonable with each other as well as with model calculations. Conventional neutron rem counters underestimated neutron ambient dose equivalent, while extended-range neutron rem counters provided results comparable to routinely used instruments. Although the responses of some instruments, not primarily intended for the use in a very complex mixed radiation field such as onboard aircraft, were as somehow expected to be different, the verification of their suitability was one of the objectives of the REFLECT. This campaign comprised a single short flight. For further testing of instruments, additional flights as well as comparison at appropriate reference fields are envisaged. The REFLECT provided valuable experience and feedback for validation of calculated aviation doses

    Intercomparison of personal and ambient dosimeters in extremely high-dose-rate pulsed photon fields

    No full text
    International audienceRecent advances in laser driven accelerators boosted the development of high dose-rate fast pulsed systems all over the world. The stray radiation comprises primarily high-energy photons, resulting in extremely high dose rates within pico-/femto-second pulses. Dose measurements in such conditions have to be evaluated to validate methods. To tackle this challenge the EUropean RAdiation DOSimetry Group (EURADOS) started a program of dosimeters intercomparison, with a progressive approach, starting by a first evaluation in fields with μs pulse duration.The first comparison took place at the Lausanne University Hospital Center with an electron LINAC in Sept. 2017 involving 7 European institutes. Several passive and active dosimeters were tested with a tunable air kerma per pulse of the order of MGy/h. All instruments, except electrets, did not show any dose rate dependence, thus being selected as possible candidates for further studies
    corecore