9 research outputs found

    Role of PatAB Transporter in Efflux of Levofloxacin in Streptococcus pneumoniae

    Get PDF
    PatAB is an ABC bacterial transporter that facilitates the export of antibiotics and dyes. The overexpression of patAB genes conferring efflux-mediated fluoroquinolone resistance has been observed in several laboratory strains and clinical isolates of Streptococcus pneumoniae. Using transformation and whole-genome sequencing, we characterized the fluoroquinolone-resistance mechanism of one S. pneumoniae clinical isolate without mutations in the DNA topoisomerase genes. We identified the PatAB fluoroquinolone efflux-pump as the mechanism conferring a low-level resistance to ciprofloxacin (8 µg/mL) and levofloxacin (4 µg/mL). Genetic transformation experiments with different amplimers revealed that the entire patA plus the 5'-terminus of patB are required for levofloxacin-efflux. By contrast, only the upstream region of the patAB operon, plus the region coding the N-terminus of PatA containing the G39D, T43A, V48A and D100N amino acid changes, are sufficient to confer a ciprofloxacin-efflux phenotype, thus suggesting differences between fluoroquinolones in their binding and/or translocation pathways. In addition, we identified a novel single mutation responsible for the constitutive and ciprofloxacin-inducible upregulation of patAB. This mutation is predicted to destabilize the putative rho-independent transcriptional terminator located upstream of patA, increasing transcription of downstream genes. This is the first report demonstrating the role of the PatAB transporter in levofloxacin-efflux in a pneumoccocal clinical isolate.This research was funded by Ministerio de Economía y Competitividad [grant BIO2017-82951-R] and Ministerio de Ciencia e Innovación, la Agencia y el Fondo Europeo de Desarrollo Regional (MCIN/AEI/10.13039/501100011033/FEDER, UE) [grant PID2021-124738OB-100].S

    Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is the main etiological agent of community-acquired pneumonia and a major cause of mortality and morbidity among children and the elderly. Genome sequencing of several pneumococcal strains revealed valuable information about the potential proteins and genetic diversity of this prevalent human pathogen. However, little is known about its transcriptional regulation and its small regulatory noncoding RNAs. In this study, we performed deep sequencing of the S. pneumoniae TIGR4 strain RNome to identify small regulatory RNA candidates expressed in this pathogen. We discovered 1047 potential small RNAs including intragenic, 5'- and/or 3'-overlapping RNAs and 88 small RNAs encoded in intergenic regions. With this approach, we recovered many of the previously identified intergenic small RNAs and identified 68 novel candidates, most of which are conserved in both sequence and genomic context in other S. pneumoniae strains. We confirmed the independent expression of 17 intergenic small RNAs and predicted putative mRNA targets for six of them using bioinformatics tools. Preliminary results suggest that one of these six is a key player in the regulation of competence development. This study is the biggest catalog of small noncoding RNAs reported to date in S. pneumoniae and provides a highly complete view of the small RNA network in this pathogen.This work was supported by the Fondo de Investigación Sanitaria (FIS) (PI08/0442 and PI11/00656) and the Ministerio de Ciencia e Innovación (MICINN) (Ramón y Cajal program, RYC-2007-00179). A.J.M. was the recipient of a postdoctoral Miguel Servet contract from the Sistema Nacional de Salud funded by the FIS. During the first part of this work, M.A. was the recipient of a junior researcher contract funded by the Ramon y Cajal program from MICINN. S.N. was the recipient of a grant from CIBER Enfermedades Respiratorias (an initiative of the Instituto de Salud Carlos III).S

    The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    Get PDF
    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.This work was supported by the Spanish Ministry of Industry and Laboratorios SALVAT within the European project Eureka Σ! 3554-DEADBUGS by the Spanish Ministry of Economics and Competitiveness grants AGL2012-40084C03-01 and AGL2015-65010-C3-1-R, and by the European Union grant FP7-PEOPLE-ITN-2008-238490. The work at the CIB was performed under the auspices of the Consejo Superior de Investigaciones Científicas.S

    Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME"

    Get PDF
    RNase II is the prototype of a ubiquitous family of enzymes that are crucial for RNA metabolism. In Escherichia coli this protein is a single-stranded-specific 3'-exoribonuclease with a modular organization of four functional domains. In eukaryotes, the RNase II homologue Rrp44 (also known as Dis3) is the catalytic subunit of the exosome, an exoribonuclease complex essential for RNA processing and decay. In this work we have performed a functional characterization of several highly conserved residues located in the RNase II catalytic domain to address their precise role in the RNase II activity. We have constructed a number of RNase II mutants and compared their activity and RNA binding to the wild type using different single- or double-stranded substrates. The results presented in this study substantially improve the RNase II model for RNA degradation. We have identified the residues that are responsible for the discrimination of cleavage of RNA versus DNA. We also show that the Arg-500 residue present in the RNase II active site is crucial for activity but not for RNA binding. The most prominent finding presented is the extraordinary catalysis observed in the E542A mutant that turns RNase II into a "super-enzyme."The work was supported by Ministerio de Educación y Ciencia, Spain, Grant SAF2007-61926, an institutional grant from the “Fundación Ramón Areces”, and by Fundaçao para a Ciência e a Tecnologia, PortugalS

    RNase R Controls Membrane Fatty Acid Composition in Streptococcus pneumoniae

    Get PDF
    Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we have studied the global impact of RNase R by comparing the transcriptional landscape of a deleted RNase R mutant to that of the wild-type strain, and this led us investigate specific targets affected by RNase R. RNA-Seq showed that RNase R deletion affects transcripts from several different biological processes. Of particular interest, elimination of RNase R results in overexpression of most of the genes encoding the components of type II fatty acid biosynthesis (FAS-II) cluster. We demonstrate that RNase R governs the turnover of most of genes from this pathway, affecting the outcome of the whole FAS-II cluster, and leading to an unbalanced membrane fatty acid composition. Our results show that the membrane of the deleted strain contains a higher proportion of unsaturated and long-chained fatty acids than the wild type strain. This leads to a higher fluidity of the Arnr mutant membrane, which is probably related with the increased sensitivity to detergent observed in this strain. We demonstrate that RNase R expression is induced in cells challenged with H2O2, which is suggestive of a role for this ribonuclease on the regulation of membrane homeostasis under oxidative stress. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The fact that RNase R controls the expression of several essential genes to the fatty acid synthesis unveils a new important function of this enzyme.This research was funded by national funds through FCT—Fundação para a Ciência e a Tecnologia—I. P., Project MOSTMICRO-ITQB with refs UIDB/04612/2020 and UIDP/04612/2020, and Project EXPL/BIA-MOL/1244/2021. S.D. and V.P. were financed by FCT contracts according to DL57/2016, respectively SFRH/BPD/84080/2012) and (SFRH/BPD/87188/2012). C.B. had a contract under the FCT project PTDC/BIA BQM/28479/2017.N

    A Small Non-Coding RNA Modulates Expression of Pilus-1 Type in Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide, and about 30% of the pneumococcal clinical isolates show type I pili-like structures. These long proteinaceous polymers extending from the bacterial surface are encoded by pilus islet 1 and play major roles in adhesion and host colonization. Pili expression is bistable and is controlled by the transcriptional activator RlrA. In this work, we demonstrate that the previously identified small noncoding RNA srn135 also participates in pilus regulation. Our findings show that srn135 is generated upon processing of the 5'-UTR region of rrgA messenger and its deletion prevents the synthesis of RrgA, the main pili adhesin. Moreover, overexpression of srn135 increases the expression of all pili genes and rises the percentage of piliated bacteria within a clonal population. This regulation is mediated by the stabilization of rlrA mRNA since higher levels of srn135 increase its half-life to 165%. Our findings suggest that srn135 has a dual role in pilus expression acting both in cis- (on the RrgA levels) and in trans- (modulating the levels of RlrA) and contributes to the delicate balance between pili expressing and non-expressing bacteria.This research was funded by Fondo de Investigación Sanitaria (FIS), grant number PI11/00656, and Ministerio de Economía, Industria y Competitividad, grant number BIO2017-82951-R.” P.A. was the recipient of a contract funded by the FIS project PI11/00656 and A.G.-S. was the recipient of a contract funded by Instituto de Salud Carlos III (CA10/1103).S

    StaR Is a Positive Regulator of Topoisomerase I Activity Involved in Supercoiling Maintenance in Streptococcus pneumoniae

    Get PDF
    The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.This research and the APC were funded by project PID2021-124738OB-100 to A.G.d.l.C., financed by MCIN/AEI/10.13039/501100011033/FEDER, UE.S

    Synergies between RNA degradation and trans-translation in Streptococcus pneumoniae: cross regulation and co-transcription of RNase R and SmpB

    Get PDF
    BACKGROUND: Ribonuclease R (RNase R) is an exoribonuclease that recognizes and degrades a wide range of RNA molecules. It is a stress-induced protein shown to be important for the establishment of virulence in several pathogenic bacteria. RNase R has also been implicated in the trans-translation process. Transfer-messenger RNA (tmRNA/SsrA RNA) and SmpB are the main effectors of trans-translation, an RNA and protein quality control system that resolves challenges associated with stalled ribosomes on non-stop mRNAs. Trans-translation has also been associated with deficiencies in stress-response mechanisms and pathogenicity. RESULTS: In this work we study the expression of RNase R in the human pathogen Streptococcus pneumoniae and analyse the interplay of this enzyme with the main components of the trans-translation machinery (SmpB and tmRNA/SsrA). We show that RNase R is induced after a 37°C to 15°C temperature downshift and that its levels are dependent on SmpB. On the other hand, our results revealed a strong accumulation of the smpB transcript in the absence of RNase R at 15°C. Transcriptional analysis of the S. pneumoniae rnr gene demonstrated that it is co-transcribed with the flanking genes, secG and smpB. Transcription of these genes is driven from a promoter upstream of secG and the transcript is processed to yield mature independent mRNAs. This genetic organization seems to be a common feature of Gram positive bacteria, and the biological significance of this gene cluster is further discussed. CONCLUSIONS: This study unravels an additional contribution of RNase R to the trans-translation system by demonstrating that smpB is regulated by this exoribonuclease. RNase R in turn, is shown to be under the control of SmpB. These proteins are therefore mutually dependent and cross-regulated. The data presented here shed light on the interactions between RNase R, trans-translation and cold-shock response in an important human pathogen.This work was supported by several grants from FCT, including grant PEst-OE/EQB/LA0004/2011 and the work at Instituto de Salud Carlos III was supported by Fondo de Investigación Sanitaria (FIS) (PI08/0442 and PI11/00656), CIBER Enfermedades Respiratorias (initiative of the Instituto de Salud Carlos III) in Spain, and by the Bilateral Collaboration program between Conselho Reitores Universidades Portuguesas (CRUP) from Portugal and Ministerio de Ciencia e Innovación (MICINN) (HP2008-0041) Acciones Integradas of Spain.S

    Absence of tmRNA Has a Protective Effect against Fluoroquinolones in Streptococcus pneumoniae

    Get PDF
    The transfer messenger RNA (tmRNA), encoded by the ssrA gene, is a small non-coding RNA involved in trans-translation that contributes to the recycling of ribosomes stalled on aberrant mRNAs. In most bacteria, its inactivation has been related to a decreased ability to respond to and recover from a variety of stress conditions. In this report, we investigated the role of tmRNA in stress adaptation in the human pathogen Streptococcus pneumoniae. We constructed a tmRNA deletion mutant and analyzed its response to several lethal stresses. The ΔssrA strain grew slower than the wild type, indicating that, although not essential, tmRNA is important for normal pneumococcal growth. Moreover, deletion of tmRNA increased susceptibility to UV irradiation, to exogenous hydrogen peroxide and to antibiotics that inhibit protein synthesis and transcription. However, the ΔssrA strain was more resistant to fluoroquinolones, showing twofold higher MIC values and up to 1000-fold higher survival rates than the wild type. Deletion of SmpB, the other partner in trans-translation, also reduced survival to levofloxacin in a similar extent. Accumulation of intracellular reactive oxygen species associated to moxifloxacin and levofloxacin treatment was also highly reduced (∼100-fold). Nevertheless, the ΔssrA strain showed higher intracellular accumulation of ethidium bromide and levofloxacin than the wild type, suggesting that tmRNA deficiency protects pneumococcal cells from fluoroquinolone-mediated killing. In fact, analysis of chromosome integrity revealed that deletion of tmRNA prevented the fragmentation of the chromosome associated to levofloxacin treatment. Moreover, such protective effect appears to relay mainly on inhibition of protein synthesis, since a similar effect was observed with antibiotics that inhibit that process. The emergence and spread of drug-resistant pneumococci is a matter of concern and these results contribute to a better comprehension of the mechanisms underlying fluoroquinolones action.This work was supported by the Fondo de investigación Sanitaria(FIS) from Instituto de Salud Carlos III (PI11/00656) and Ministerio de Economía y Competitividad (BIO2014-55462-R).LB and JW were recipients of grants from the Inov Contacto C19and 18 programs, respectively, attributed by the Agência para o Investimento e Comércio Externo de Portugal with Portuguese and European funds. AG-S was recipient of a contract funded by Instituto de Salud Carlos III (CA10/1103).S
    corecore