9 research outputs found

    Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition

    Get PDF
    Characterizing changes in protein-protein interactions associated with sequence variants (e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies

    BioID-based identification of SKP Cullin F-box (SCF)(beta-TrCP1/2) E3 ligase substrates

    No full text
    The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF beta-TrCP1 and SCF beta-TrCP2 are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NF kappa B signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF beta-TrCP1/2 interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCF beta-TrCP1/2 substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for beta-TrCP in the maintenance of nuclear membrane integrity, processing (P)body turnover and translational control. Together, our data suggest that beta-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases

    KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer

    No full text
    Summary: Triple-negative breast cancers (TNBCs) display a complex spectrum of mutations and chromosomal aberrations. Chromosome 5q (5q) loss is detected in up to 70% of TNBCs, but little is known regarding the genetic drivers associated with this event. Here, we show somatic deletion of a region syntenic with human 5q33.2–35.3 in a mouse model of TNBC. Mechanistically, we identify KIBRA as a major factor contributing to the effects of 5q loss on tumor growth and metastatic progression. Re-expression of KIBRA impairs metastasis in vivo and inhibits tumorsphere formation by TNBC cells in vitro. KIBRA functions co-operatively with the protein tyrosine phosphatase PTPN14 to trigger mechanotransduction-regulated signals that inhibit the nuclear localization of oncogenic transcriptional co-activators YAP/TAZ. Our results argue that the selective advantage produced by 5q loss involves reduced dosage of KIBRA, promoting oncogenic functioning of YAP/TAZ in TNBC. : Triple-negative breast cancers (TNBCs) frequently lose chromosome 5q. Using a TNBC mouse model with spontaneous loss of a syntenic region, Knight et al. identify KIBRA as a metastasis suppressor. Mechanistically, KIBRA suppresses RHOA activation, impairing nuclear translocation of the oncogenes YAP/TAZ, which drive metastatic and cancer stem cell-like behavior. Keywords: KIBRA, WWC1, PTPN14, YAP/TAZ, mechanotransduction, RHOA signaling, triple-negative breast cancer, metastasis, tumorspheres, chr5

    Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response

    No full text
    Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response
    corecore