199 research outputs found

    Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: a multisite study.

    Get PDF
    Relapse of depression following treatment is high. Biomarkers predictive of an individual's relapse risk could provide earlier opportunities for prevention. Since electroconvulsive therapy (ECT) elicits robust and rapidly acting antidepressant effects, but has a >50% relapse rate, ECT presents a valuable model for determining predictors of relapse-risk. Although previous studies have associated ECT-induced changes in brain morphometry with clinical response, longer-term outcomes have not been addressed. Using structural imaging data from 42 ECT-responsive patients obtained prior to and directly following an ECT treatment index series at two independent sites (UCLA: n = 17, age = 45.41±12.34 years; UNM: n = 25; age = 65.00±8.44), here we test relapse prediction within 6-months post-ECT. Random forests were used to predict subsequent relapse using singular and ratios of intra and inter-hemispheric structural imaging measures and clinical variables from pre-, post-, and pre-to-post ECT. Relapse risk was determined as a function of feature variation. Relapse was well-predicted both within site and when cohorts were pooled where top-performing models yielded balanced accuracies of 71-78%. Top predictors included cingulate isthmus asymmetry, pallidal asymmetry, the ratio of the paracentral to precentral cortical thickness and the ratio of lateral occipital to pericalcarine cortical thickness. Pooling cohorts and predicting relapse from post-treatment measures provided the best classification performances. However, classifiers trained on each age-disparate cohort were less informative for prediction in the held-out cohort. Post-treatment structural neuroimaging measures and the ratios of connected regions commonly implicated in depression pathophysiology are informative of relapse risk. Structural imaging measures may have utility for devising more personalized preventative medicine approaches

    A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

    Get PDF
    Abstract Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grassbased diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Using the Light Microscopy Module (LMM) on the International Space Station (ISS), The Advanced Colloids Experiment (ACE) and MacroMolecular Biophysics (MMB)

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

    Get PDF
    Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years

    Pulsatilla patens (Ranunculaceae), a perennial herb, is ectomycorrhizal in northeastern Poland and likely shares ectomycorrhizal fungi with Pinus sylvestris

    No full text
    The sharing of species of ectomycorrhizal fungi (EMF) among different co-occurring host plant species could allow the formation of common mycorrhizal networks, which can alter plant–plant interactions and succession. Such sharing of EMF among woody species is thought to be common in many forests, but very few herbaceous plants form EMF, so they are assumed to be excluded from EMF networks in forests. We studied the EMF on roots of a common coniferous tree, Pinus sylvestris, and a co-occurring rare herbaceous perennial plant, Pulsatilla patens (Ranunculaceae), in northeastern Poland. We examined roots from co-occuring P. sylvestris and P. patens, visually classified EMF into morphotypes, studied tissue sections of mycorrhizal structures using compound microscopy, and used DNA sequencing to identify the fungi. On both host plant species, we observed EMF colonization, with colonized root tips exhibiting a swollen appearance, as well as a variety of colors and textures of fungal mycelium covering and emanating from those swollen tips. Sectioning and microscopic examination of an EMF morphotype common on P. patens confirmed the presence of a mantle and Hartig net, indicating the likely presence of functional ectomycorrhizal structures. The two most frequent EMF were Cenococcum geophilum and Piloderma olivaceum, and the latter was found to associate with both host plant species. Several EMF found here only on P. patens, including C. geophilum and two Russula species, are known from previous studies to also associate with P. sylvestris and other tree species. The observation of shared EMF between a coniferous tree and an understory herb indicates the potential for common mycorrhizal networks to alter interactions between these two species and may also indicate a unique way in which the distribution and abundance of a rare herbaceous plant may be influenced by shared mutualisms with a common co-occurring woody plant
    corecore