68 research outputs found

    Antioxidant activity in selected tomato genotypes cultivated in conventional and organic culture systems

    Get PDF
    The present study is a compilation of results obtained at the Vegetable Research and Development Station Bacau regarding the influence of the culture system on the quantitative and qualitative yield of tomatoes. The present study provides comparative information regarding yield achievements of tomato genotypes cultivated in two different culture systems (conventional and organic), in order to highlight the suitability of the cultivation system. The best yield results were obtained at a density of 30,000 plants per hectare in both culture systems. All studied genotypes resulted in quantitatively superior yield in the conventional system as opposed to the organic system. Another purpose of this study was to determine the difference in antioxidant activity of tomato genotypes cultivated in the ecological and the conventional culture systems. The results indicate the suitability of the tomato to organic cultivation, highlighting the potential of the tomato species to be utilized as a significant source of natural antioxidants, and also the influence of cultivation systems on the accumulation of antioxidant compounds.Keywords: Lycopersicon esculentum, polyphenols, flavones, yieldAfrican Journal of Biotechnology Vol. 12(20), pp. 2884-289

    Effect of AgNO3 on androgenesis of Brassica oleracea L. anthers cultivated in vitro

    Get PDF
    The present article is a synthesis study accomplished at Vegetable Research and Development Station Bacau regarding the implication of silver nitrate (AgNO3) in modulating the morphogenetic reaction of white cabbage anthers cultivated in vitro. According to literature, silver nitrate is a strong inhibitor of ethylene action. Embryo formation, shoot generation and rooting of plantlets are key points on which relies the entire concept of in vitro tissue culture. Silver ions, in the form of nitrate play an important role in promoting the somatic embryogenesis and organogenesis, which led its wide spread use in different plant tissue culture in vitro. Therefore, our researches focused on testing different concentrations of AgNO3 (5, 10, 15, 25, 30, 50 and 60 μM) added to a pre-tested medium formula– Murashige and Skoog (MS), 1962 basal medium supplemented with benzylaminopurine (BAP)- 8.9 μM and naphthylacetic acid (NAA) 2.7 μM. The biological material is represented by unopened flower buds containing anthers with microspores at late uninucleate to binucleate stage. In the culture condition investigated in this study, the data obtained promotes the utilization of AgNO3 in a concentration of 50 μM for the successfully induction and sustaining of regenerative processes of white cabbage anthers cultivated in vitro.Keywords: Buds, embryogenesis, ethylene, organogenesis, regeneratio

    Studiul combaterii biologice a tripsului comun la ardei

    Get PDF
    The trials of tripsattack and ecological control of pests were performed at Vegetable Research and Development Station Bacau –Romania, during 2016 -2017. The dynamic of trips attack in pepperand effectiveness of Amblyseius swirskii At.-H. (Arachnida, Mesostigmata, Phytoseiidae) releases in control of onion tripsat pepper collection of cultivars in tunnelswasstudied. The trial of A. swirskii in tripscontrol was performed at the followingrelease rates: V1 –500,000 mites/ha; V2 –700,000 mites/ha; V3 –900,000 mites/ha; V4. 1 million mites/ha; V5 -Control.On observed that the reducing trips degree attack by release of A. swirskii at pepper is effective in August -September usingthe release rates between 700,000 ex /ha -1,000,000 ex/ ha

    Soluble Immune Complexes Shift the TLR-Induced Cytokine Production of Distinct Polarized Human Macrophage Subsets towards IL-10

    Get PDF
    Contains fulltext : 109563.pdf (publisher's version ) (Open Access)BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs) and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-gamma, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs). Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MPhi(IL-4). In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2). The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10

    Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2(+) γδ T cell cytotoxicity in a perforin-dependent manner.

    Get PDF
    Vδ2(+) T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2(+) T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2(+) T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C-C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2(+) T cell cytotoxicity. Vδ2(+) T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive-at least in part-to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2(+) T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy

    GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis

    Get PDF
    Dysregulated hematopoiesis occurs in several chronic inflammatory diseases, but it remains unclear how hematopoietic stem cells (HSCs) in the bone marrow (BM) sense peripheral inflammation and contribute to tissue damage in arthritis. Here, we show the HSC gene expression program is biased toward myelopoiesis and differentiation skewed toward granulocyte-monocyte progenitors (GMP) during joint and intestinal inflammation in experimental spondyloarthritis (SpA). GM-CSF-receptor is increased on HSCs and multipotent progenitors, favoring a striking increase in myelopoiesis at the earliest hematopoietic stages. GMP accumulate in the BM in SpA and, unexpectedly, at extramedullary sites: in the inflamed joints and spleen. Furthermore, we show that GM-CSF promotes extramedullary myelopoiesis, tissue-toxic neutrophil accumulation in target organs, and GM-CSF prophylactic or therapeutic blockade substantially decreases SpA severity. Surprisingly, besides CD4+ T cells and innate lymphoid cells, mast cells are a source of GM-CSF in this model, and its pathogenic production is promoted by the alarmin IL-33

    Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status

    Get PDF
    BACKGROUND: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. METHODS: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. RESULTS: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. CONCLUSIONS: Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status
    corecore