18 research outputs found

    Sistemas ópticos con multiplexación por división en código (OCDMA) empleando redes de difracción de Bragg sobre fibra óptica

    Full text link
    Los avances de los últimos años en dispositivos ópticos han permitido que las tecnologías de codificación y decodificación óptica sean hoy en día una realidad. Existen múltiples aplicaciones en las que es posible utilizar los procesos de cod/decodificación óptica, pero la más conocida es el acceso múltiple por división en código dentro de un entorno óptico, conocida como OCDMA por sus siglas en ingles. En esta tesis doctoral se presenta un estudio de los sistemas OCDMA de tipo coherente, abarcando dos aspectos fundamentales; el modelado del ruido que interfiere con la señal objetivo y el diseño e implementación de las redes de difracción de Bragg como dispositivos Cod/decodificadores. Dentro del modelado del ruido se han incluido la mayor cantidad de variables posibles, con el objeto de conseguir un modelo lo más acertado posible. De esta manera, se considera desde el ancho de banda del receptor hasta el estado de polarización de las señales, pasando por el uso de los dos tipos de modulación más importantes en estos sistemas, como son OOK (On-Off Keying) y DPSK (Differential Phase Shift Keying). Por otra parte, las redes de difracción de Bragg se presentan como los dispositivos más prometedores para ser usados en OCDMA, gracias a su versatilidad y a estar construidas sobre fibras ópticas. Por ello se ha dedicado especial atención a estudiar sus características, destacando en especial, su dependencia con la temperatura y la relevancia de la reflectividad sobre su comportamiento al cod/decodificar señales. A partir de allí se presenta un novedoso método de diseño, realizado mediante un proceso de síntesis, que da como resultado un dispositivo con excelentes prestaciones. En esta tesis también se estudia la codificación y decodificación todo óptica de etiquetas en redes de conmutación de paquetes. Esta aplicación busca reducir los tiempos de proceso que se tienen en la actualidad en un nodo óptico y ha sido propuesta hace ya un par de años. Aquí nos enfocamos en dos asAmaya Ocampo, WA. (2008). Sistemas ópticos con multiplexación por división en código (OCDMA) empleando redes de difracción de Bragg sobre fibra óptica [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3788Palanci

    Modelado de un Sistema de Acceso Múltiple por división de código en el Entorno Óptico

    Get PDF
    This paper describes the OCDMA technology (Optical Code Division Multiple Access) focussing on the coherent systems OCDMA. The modelling was done using VPI v7.0 and the results of the simulations are presented. The utility of OCDMA as a control access technology it's demonstrated by the simulations which describe the most important aspect to be considered to evaluate the performance of coherent OCDMA Systems.Este documento describe la tecnología OCDMA (optical code division multiple access) centrándose en los sistemas coherentes OCDMA. Se realiza el modelamiento del sistema usando VPI v7.0 y se presentan los resultados de las simulaciones realizadas.Las simulaciones muestran la funcionalidad de OCDMA como tecnología de control de acceso y describe los principales aspectos a tener en cuenta al momento de evaluar el rendimiento de este tipo de tecnología

    Análisis del Problema del Ruido en Sistemas TS-OCDMA Coherentes

    Get PDF
    This paper descibes the analysis related to the noise problems that exist in the TS-OCDMA Systems (Time Spreading - Optical Code Division Multiple Access). This noise is composed by the Beat Noise, Multiple Access Interference Noise, thermal and Shot Noise of the electronics devices presents in the detection process. The model of noise in this paper is evaluated through simulations in which the main parameters to be considered are the power penalty, the BER and the crosstalk.El presente artículo describe el análisis del problema del ruido en los sistemas TS-OCDMA (Time Spreading - Optical Code Division Multiple Access). El ruido total en este tipo de sistemas esta compuesto por ruido de batido, ruido de interferencia de múltiple acceso (MAI) y por el ruido térmico y shot propios de los elementos electrónicos presentes en el proceso de detección. El modelo de ruido que se plantea en este artículo es evaluado mediante simulaciones en donde los principales parámetros a considerar son la penalización de potencia, la razón de error bit (BER) y la diafonía

    Super-structured Fiber Bragg Gratings with improved features for Coherent Direct Sequence OCDMA

    Full text link
    [EN] This paper reports different proposals in the field of the Super-structured Fiber Bragg Gratings for Coherent Direct Sequence OCDMA applications providing enhanced fea- tures in terms of available spectral bandwidth, spectral efficiency and inter-channel rejection suitable for WDM and OCDMA combined applications. The reported de- vices cover the multiband en-decoders covering different bands on the same device, the almost rectangular envelope en-decoders demonstrated for both 1 and 5 ITU- 100GHz bands providing flat response and a roll-off better than 5 dB/GHz, and finally a multidimensional WDM/CODE/SPACE multiplexing proposal based on the concatenation of rectangular SSFBGs.This work was supported by the Spanish Government project TEC 2009-12169, and the Valencian Government under the project ACOMP/2010/023.Baños López, R.; Pastor Abellán, D.; García Muñoz, V.; Amaya Ocampo, WA. (2013). Super-structured Fiber Bragg Gratings with improved features for Coherent Direct Sequence OCDMA. Waves. 5(1):5-12. http://hdl.handle.net/10251/57917S5125

    Dispersion supported BB84 quantum key distribution using phase modulated light

    Full text link
    We propose and experimentally demonstrate that, contrary to what was thought up to now, an efficient BB84 operation is feasible using the double phase modulator (PMPM) configuration in frequency-coded quantum key distribution systems without dispersion compensation. This is achieved by exploiting the chromatic dispersion provided by the fiber linking Alice and Bob. Thus, we refer to this system as dispersion supported or as the DS BB84 PMPM configuration. © 2011 IEEE.Mora Almerich, J.; Ruiz Alba Gaya, A.; Amaya Ocampo, WA.; Capmany Francoy, J. (2011). Dispersion supported BB84 quantum key distribution using phase modulated light. IEEE Photonics Journal. 3(3):433-440. doi:10.1109/JPHOT.2011.2146764S4334403

    Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication

    Get PDF
    An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes

    Quantum entropy source on an InP photonic integrated circuit for random number generation

    Full text link
    [EN] Random number generators are essential to ensuring performance in information technologies, including cryptography, stochastic simulations, and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilization of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centers. (C) 2016 Optical Society of AmericaEuropean Regional Development Fund (FEDER) (TEC2013-46168-R); Ministerio de Economia y Competitividad (MINECO) Qu-CARD (SRTC1400C002844XV0); Severo Ochoa (SEV-2015-0522); XPLICA (FIS2014-62181-EXP); European Research Council (ERC) (AQUMET 280169, ERIDIAN 713682); European Union QUIC (641122); Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) (2014 LLAV 00078, 2014-SGR-1295, 2014-SGR-1623); Fundacion CELLEX.Abellan, C.; Amaya Ocampo, WA.; Doménech Gómez, JD.; Muñoz Muñoz, P.; Capmany Francoy, J.; Longhi, S.; Mitchell, MW.... (2016). Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 3(9):989-994. https://doi.org/10.1364/OPTICA.3.000989S98999439Shannon, C. E. (1949). Communication Theory of Secrecy Systems*. Bell System Technical Journal, 28(4), 656-715. doi:10.1002/j.1538-7305.1949.tb00928.xBrin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-xMascagni, M., Qiu, Y., & Hin, L.-Y. (2014). High performance computing in quantitative finance: A review from the pseudo-random number generator perspective. Monte Carlo Methods and Applications, 20(2). doi:10.1515/mcma-2013-0020Click, T. H., Liu, A., & Kaminski, G. A. (2010). Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. Journal of Computational Chemistry, 32(3), 513-524. doi:10.1002/jcc.21638Rarity, J. G., Owens, P. C. M., & Tapster, P. R. (1994). Quantum Random-number Generation and Key Sharing. Journal of Modern Optics, 41(12), 2435-2444. doi:10.1080/09500349414552281Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., … Leuchs, G. (2010). A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 4(10), 711-715. doi:10.1038/nphoton.2010.197Qi, B., Chi, Y.-M., Lo, H.-K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312. doi:10.1364/ol.35.000312Jofre, M., Curty, M., Steinlechner, F., Anzolin, G., Torres, J. P., Mitchell, M. W., & Pruneri, V. (2011). True random numbers from amplified quantum vacuum. Optics Express, 19(21), 20665. doi:10.1364/oe.19.020665Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., … Mitchell, M. W. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 22(2), 1645. doi:10.1364/oe.22.001645Yuan, Z. L., Lucamarini, M., Dynes, J. F., Fröhlich, B., Plews, A., & Shields, A. J. (2014). Robust random number generation using steady-state emission of gain-switched laser diodes. Applied Physics Letters, 104(26), 261112. doi:10.1063/1.4886761Nie, Y.-Q., Huang, L., Liu, Y., Payne, F., Zhang, J., & Pan, J.-W. (2015). The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Review of Scientific Instruments, 86(6), 063105. doi:10.1063/1.4922417Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., & Mitchell, M. W. (2015). Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. Physical Review Letters, 115(25). doi:10.1103/physrevlett.115.250403Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001Walmsley, I. A. (2015). Quantum optics: Science and technology in a new light. Science, 348(6234), 525-530. doi:10.1126/science.aab0097Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., & Walther, P. (2013). Experimental boson sampling. Nature Photonics, 7(7), 540-544. doi:10.1038/nphoton.2013.102Matthews, J. C. F., Politi, A., Stefanov, A., & O’Brien, J. L. (2009). Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photonics, 3(6), 346-350. doi:10.1038/nphoton.2009.93Khanmohammadi, A., Enne, R., Hofbauer, M., & Zimmermanna, H. (2015). A Monolithic Silicon Quantum Random Number Generator Based on Measurement of Photon Detection Time. IEEE Photonics Journal, 7(5), 1-13. doi:10.1109/jphot.2015.2479411Zadok, A., Shalom, H., Tur, M., Cornwell, W. D., & Andonovic, I. (1998). Spectral shift and broadening of DFB lasers under direct modulation. IEEE Photonics Technology Letters, 10(12), 1709-1711. doi:10.1109/68.730477Adler, R. (1973). A study of locking phenomena in oscillators. Proceedings of the IEEE, 61(10), 1380-1385. doi:10.1109/proc.1973.9292Aronson, D. G., Doedel, E. J., & Othmer, H. G. (1987). An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators. Physica D: Nonlinear Phenomena, 25(1-3), 20-104. doi:10.1016/0167-2789(87)90095-9Aronson, D. G., Ermentrout, G. B., & Kopell, N. (1990). Amplitude response of coupled oscillators. Physica D: Nonlinear Phenomena, 41(3), 403-449. doi:10.1016/0167-2789(90)90007-cLang, R., & Kobayashi, K. (1980). External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 16(3), 347-355. doi:10.1109/jqe.1980.1070479Yanchuk, S., Schneider, K. R., & Recke, L. (2004). Dynamics of two mutually coupled semiconductor lasers: Instantaneous coupling limit. Physical Review E, 69(5). doi:10.1103/physreve.69.056221Erzgräber, H., Lenstra, D., Krauskopf, B., Wille, E., Peil, M., Fischer, I., & Elsäßer, W. (2005). Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios. Optics Communications, 255(4-6), 286-296. doi:10.1016/j.optcom.2005.06.016Torcini, A., Barland, S., Giacomelli, G., & Marin, F. (2006). Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics. Physical Review A, 74(6). doi:10.1103/physreva.74.063801Mitchell, M. W., Abellan, C., & Amaya, W. (2015). Strong experimental guarantees in ultrafast quantum random number generation. Physical Review A, 91(1). doi:10.1103/physreva.91.012314Martin, A., Sanguinetti, B., Lim, C. C. W., Houlmann, R., & Zbinden, H. (2015). Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems. Journal of Lightwave Technology, 33(13), 2855-2859. doi:10.1109/jlt.2015.241691

    Microwave Photonics Parallel Quantum Key Distribution

    Full text link
    The incorporation of multiplexing techniques used in microwave photonics to quantum key distribution (QKD) systems brings important advantages by enabling the simultaneous and parallel delivery of multiple keys between a central station and different end-users in the context of multipoint access and metropolitan networks, or by providing higher key distribution rates in point to point links by suitably linking the parallel distributed keys. It also allows the coexistence of classical information and QKD channels over a single optical fiber infrastructure. In this paper, we show, for the first time to our knowledge, the successful operation of a two-domain (subcarrier and wavelength division) multiplexed strong reference BB84 QKD system. A four-independent channel QKD system featuring a sifted key rate of 10 kb/s/channel over an 11-km link with quantum bit error rate (QBER) < 2% is reported. These results open the way for multi-QKD over optical fiber networks. © 2012 IEEE.The authors wish to acknowledge the financial support of the Spanish Ministry of Science and Innovation and the Generalitat Valenciana through projects CONSOLIDER INGENIO 2010 Quantum Information Technologies and PROMETEO GVA 2008-092 MICROWAVE PHOTONICS.Ruiz Alba Gaya, A.; Mora Almerich, J.; Amaya Ocampo, WA.; Martínez García, A.; García Muñoz, V.; Calvo Díaz-Aldagalán, D.; Capmany Francoy, J. (2012). Microwave Photonics Parallel Quantum Key Distribution. IEEE Photonics Journal. 4(3):931-942. doi:10.1109/JPHOT.2012.2201255S9319424

    Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON

    Full text link
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.016358. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawWe report the transmission of 40 quantum-key channels using WDM/SCM-QKD technology and 4 bidirectional classical channels over a PON. To our knowledge the highest number of quantum key channels simultaneously transmitted that has ever been reported. The quantum signal coexists with classical reference channel which is employed to process the qbits, but it has enough low power to avoid Raman crosstalk and achieving a high number of WDM-QKD channels. The experimental results allow us to determine the minimum rejection ratio required by the filtering devices employed to select each quantum channel and maximize the quantum key rate. These results open the path towards high-count QKD channel transmission over optical fiber infrastructures.The authors wish to acknowledge the financial support of the Spanish Ministry of Science & Innovation and the Generalitat Valenciana through projects CONSOLIDER INGENIO 2010 Quantum Information Technologies and PROMETEO GVA 2008-092 MICROWAVE PHOTONICS.Mora Almerich, J.; Amaya Ocampo, WA.; Ruiz Alba Gaya, A.; Martínez García, A.; Calvo Díaz-Aldagalán, D.; García Muñoz, V.; Capmany Francoy, J. (2012). Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Optics Express. 20(15):16358-16365. https://doi.org/10.1364/OE.20.016358S16358163652015Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145-195. doi:10.1103/revmodphys.74.145Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350. doi:10.1103/revmodphys.81.1301Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89Chen, J., Wu, G., Xu, L., Gu, X., Wu, E., & Zeng, H. (2009). Stable quantum key distribution with active polarization control based on time-division multiplexing. New Journal of Physics, 11(6), 065004. doi:10.1088/1367-2630/11/6/065004Yoshino, K., Fujiwara, M., Tanaka, A., Takahashi, S., Nambu, Y., Tomita, A., … Tajima, A. (2012). High-speed wavelength-division multiplexing quantum key distribution system. Optics Letters, 37(2), 223. doi:10.1364/ol.37.000223Mora, J., Ruiz-Alba, A., Amaya, W., Martínez, A., García-Muñoz, V., Calvo, D., & Capmany, J. (2012). Experimental demonstration of subcarrier multiplexed quantum key distribution system. Optics Letters, 37(11), 2031. doi:10.1364/ol.37.002031Townsend, P. D. (1997). Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electronics Letters, 33(3), 188. doi:10.1049/el:19970147Choi, I., Young, R. J., & Townsend, P. D. (2010). Quantum key distribution on a 10Gb/s WDM-PON. Optics Express, 18(9), 9600. doi:10.1364/oe.18.009600Ortega, B., Mora, J., Puerto, G., & Capmany, J. (2007). Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network. Optics Express, 15(25), 16781. doi:10.1364/oe.15.016781Guerreau, O. L., Malassenet, F. J., McLaughlin, S. W., & Merolla, J.-M. (2005). Quantum key distribution without a single-photon source using a strong reference. IEEE Photonics Technology Letters, 17(8), 1755-1757. doi:10.1109/lpt.2005.851050Capmany, J., & Fernandez-Pousa, C. R. (2011). Impact of Third-Order Intermodulation on the Performance of Subcarrier Multiplexed Quantum Key Distribution. Journal of Lightwave Technology, 29(20), 3061-3069. doi:10.1109/jlt.2011.2165526Yuan, Z. L., Kardynal, B. E., Sharpe, A. W., & Shields, A. J. (2007). High speed single photon detection in the near infrared. Applied Physics Letters, 91(4), 041114. doi:10.1063/1.276013

    Practical Quantum Key Distribution based on the BB84 protocol

    Full text link
    [EN] This paper provides a review of the most important and widely used Quantum Key Distribution systems and then describes our recently proposed scheme based on Subcarrier Multiplexing that opens the possibility of parallel Quantum Key Distribution. We report the first-ever experimental implementation of parallel quantum key distribution using this technique showing a maximum multiplexing gain.This work was supported in part by the Spanish Government through Quantum Optical Information Technology (QOIT), a CONSOLIDER-INGENIO 2010 Project and in part by the Generalitat Valenciana through the PROMETEO 2008/092 research excellency award.Ruiz Alba Gaya, A.; Calvo Díaz-Aldagalán, D.; García Muñoz, V.; Martínez García, A.; Amaya Ocampo, WA.; Rozo Chicue, JG.; Mora Almerich, J.... (2011). Practical Quantum Key Distribution based on the BB84 protocol. Waves. 1(3):4-14. http://hdl.handle.net/10251/53967S4141
    corecore