258 research outputs found

    Gα16, a G Protein α Subunit Specifically Expressed in Hematopoietic Cells

    Get PDF
    Signal-transduction pathways mediated by guanine nucleotide-binding regulatory proteins (G proteins) determine many of the responses of hematopoietic cells. A recently identified gene encoding a G protein α subunit, Gα16, is specifically expressed in human cells of the hematopoietic lineage. The Gα16 cDNA encodes a protein with predicted Mr of 43,500, which resembles the Gq class of α subunits and does not include a pertussis toxin ADP-ribosylation site. In comparison with other G protein α subunits, the Gα16 predicted protein has distinctive amino acid sequences in the amino terminus, the region A guanine nucleotide-binding domain, and in the carboxyl-terminal third of the protein. Cell lines of myelomonocytic and T-cell phenotype express the Gα16 gene, but no expression is detectable in two B-cell lines or in nonhematopoietic cell lines. Gα16 gene expression is down-regulated in HL-60 cells induced to differentiate to neutrophils with dimethyl sulfoxide. Antisera generated from synthetic peptides that correspond to two regions of Gα16 specifically react with a protein of 42- to 43-kDa in bacterial strains that overexpress Gα16 and in HL-60 membranes. This protein is decreased in membranes from dimethyl sulfoxide-differentiated HL-60 cells and is not detectable in COS cell membranes. The restricted expression of this gene suggests that Gα16 regulates cell-type-specific signal-transduction pathways, which are not inhibited by pertussis toxin

    Distinct forms of the ß subunit of GTP-binding regulatory proteins identified by molecular cloning

    Get PDF
    Two distinct β subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as β 1 and β 2 subunits. The bovine transducin β subunit (β 1) has been cloned previously. We have now isolated and analyzed cDNA clones that encode the β 2 subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue Mr 37,329 β 2 protein is 90% identical with β 1 in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine β 2 subunit is 1.7 kilobases in length. It is expreβed at lower levels than β 1 subunit mRNA in all tiβues examined. The β 1 and β 2 meβages are expreβed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that β 1 and β 2 are encoded by separate genes. The amino acid sequences for the bovine and human β 2 subunit are identical, as are the amino acid sequences for the bovine and human β 1 subunit. This evolutionary conservation suggests that the two β subunits have different roles in the signal transduction process

    Validation of Neural Network-based Fault Diagnosis for Multi-stack Fuel Cell Systems: Stack Voltage Deviation Detection☆

    Get PDF
    Abstract This paper presents (i) an algorithm for the detection of unexpected stack voltage deviations in an Solid Oxide Fuel Cells (SOFC)-based power system with multiple stacks and (ii) its validation in a simulated online environment. The algorithm is based on recurrent neural networks (RNNs) and is validated by using operating data from the Wartsila WFC20 multi-stack SOFC system. The voltage deviation detection is based on statistical testing. Instead of a hardware implementation in the actual power plant, the algorithm is validated in a simulated online environment that provides data I/O communication based on the OPC (i.e. Object Linking and Embedding (OLE) for Process Control) protocol, which is also the technology utilized in the real hardware environment. The validation tests show that the RNN-based algorithm effectively detects unwanted stack voltage deviations and also that it is online-viable

    Neutrophil C5a receptor and the outcome in a rat model of sepsis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154259/1/fsb2fj030009fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154259/2/fsb2fj030009fje-sup-0001.pd

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course

    Get PDF
    Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-na\uefve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. Fund: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society

    Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma.

    Get PDF
    Background Cutaneous head and neck melanoma has poor outcomes and limited treatment options. In OPTiM, a phase 3 study in patients with unresectable stage IIIB/IIIC/IV melanoma, intralesional administration of the oncolytic virus talimogene laherparepvec improved durable response rate (DRR; continuous response ≥6 months) compared with subcutaneous granulocyte-macrophage colony-stimulating factor (GM-CSF).Methods Retrospective review of OPTiM identified patients with cutaneous head and neck melanoma given talimogene laherparepvec (n = 61) or GM-CSF (n = 26). Outcomes were compared between talimogene laherparepvec and GM-CSF treated patients with cutaneous head and neck melanoma.Results DRR was higher for talimogene laherparepvec-treated patients than for GM-CSF treated patients (36.1% vs 3.8%; p = .001). A total of 29.5% of patients had a complete response with talimogene laherparepvec versus 0% with GM-CSF. Among talimogene laherparepvec-treated patients with a response, the probability of still being in response after 12 months was 73%. Median overall survival (OS) was 25.2 months for GM-CSF and had not been reached with talimogene laherparepvec.Conclusion Treatment with talimogene laherparepvec was associated with improved response and survival compared with GM-CSF in patients with cutaneous head and neck melanoma. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1752-1758, 2016

    Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma.

    Get PDF
    Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 - a physiological driver of proliferation of osteo-chondrogenic progenitors - by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol.Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy
    corecore