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Abstract 

This paper presents (i) an algorithm for the detection of unexpected stack voltage deviations in an Solid Oxide Fuel Cells 
(SOFC)-based power system with multiple stacks and (ii) its validation in a simulated online environment. The algorithm is 
based on recurrent neural networks (RNNs) and is validated by using operating data from the Wärtsilä WFC20 multi-stack SOFC 
system. The voltage deviation detection is based on statistical testing. Instead of a hardware implementation in the actual power 
plant, the algorithm is validated in a simulated online environment that provides data I/O communication based on the OPC (i.e. 
Object Linking and Embedding (OLE) for Process Control) protocol, which is also the technology utilized in the real hardware 
environment. The validation tests show that the RNN-based algorithm effectively detects unwanted stack voltage deviations and 
also that it is online-viable. 
 
© 2013 The Authors. Published by Elsevier Ltd. 
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1. INTRODUCTION 

The solid oxide fuel cell technology provides an efficient means of producing electric power from a variety of 
fuels. With the current material and manufacturing limitations, a large-scale SOFC power plant (>50kW) cannot rely 
only on a single stack of SOFCs, but several – tens or even hundreds – of SOFC stacks must be used in parallel to 
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produce the necessary high-power output. In some designs, the stacks in such a multi-stack system are thermally 
connected (i.e. not separately insulted) but have separate fuel and air feeds and possibly have independent load 
control. The thermal connection of the stacks, among other things, makes it desirable to aim for operating the stacks 
in a controlled and uniform manner, so that the degradation rate and thus the heat production of all stacks is similar 
throughout their lifetime.  

The stack voltage is a typical measure of stack performance and/or stack condition. If the voltage of one (or more) 
stack(s) in a multi-stack system starts to behave differently than before – than what is considered normal – this 
should be detected as early as possible as it signals that the stacks are changing differently, possibly indicating an 
incipient stack failure. The early detection of such stack voltage deviations then enables counteracting the changes 
via controlling the stacks’ current values appropriately. 

This paper presents a simple algorithm for automatic detection of stack voltage deviations and the simulated 
online validation of that algorithm with real system data. Section 2 focuses on the development of recurrent neural 
networks suitable to perform real-time one-step ahead prediction of SOFC voltage. Then, the stack voltage deviation 
detection principles are presented in Section 3. Afterwards, the simulation testing environment is described in 
section 4, particularly highlighting the successful integration of RNN estimators with the voltage detection algorithm 
within a unique software environment. The results and conclusions are finally discussed in Sections 4 and 5, 
respectively. 

2. RECURRENT NEURAL NETWORK DEVELOPMENT 

RNN predictors were often proven effective for real-time applications concerning energy systems, as described in 
[1][2]. Specifically in this work, the RNN model topology developed for SOFC stack and systems and presented in 
[2] was here deployed, to perform one-step ahead prediction of single-stack voltage within the above-mentioned 
Wärtsilä WFC20 multi-stack SOFC system. It is worth clarifying here that RNN structure, whose optimal selection 
positively impacts against overfitting issues, was firstly determined by running a trial and error analysis on the 
validation error made by an RNN simulator of the average multi-stack voltage. Fig. 1 resumes the results of such an 
analysis, particularly highlighting how a relatively low number of hidden neurons (i.e. 5) is sufficient to guarantee 
adequate accuracy and generalization, whereas past memory of input variables (past input data) should correspond 
to 8. However, since the error does not increase that significantly going from 8 to 10, it was decided to select the 
structure consisting of 5 hidden neurons and 10 past inputs, as it was proven more accurate, on average, on both the 
training and test sets. Regarding the output feedbacks number, it was assumed equal to 2, in accordance with past 
experience gained by the authors in previous experimentally tested applications [3].  

Afterwards, 6 different RNNs were trained on a simple training-set, which mainly consisted of a ramp variation 
in current density. The good level of generalization achieved by the RNN structure addressed by the above-
described trial-and-error analysis (see Fig. 1) is confirmed by the good agreement between experimental and 
simulated trajectories over the test data-set shown on Fig. 2. 

Finally, Fig. 3 shows how the six RNN predictors were assembled together into a unique Matlab/Simulink® 
block, which was subsequently interfaced to the detection algorithm, as described later on in the current paper. 
Further details on theoretical background of RNN models can be retrieved from [4]. 
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Fig. 1. Test error variation as a function of the RNN structure used to simulate average multi-stack voltage trajectory. 
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Fig. 2. Comparison between experimental and simulated voltage trajectories, here considered as test-sets for 6 stacks included in the Wärtsilä 
WFC20 multi-stack SOFC system.  
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Fig. 3. Schematic description of the multi-RNN executable, which was specifically developed for testing the model-based diagnostic tool in a 
simulated online environment (see sections 4 and 5). 

3. DETECTION OF STACK VOLTAGE DEVIATION 

The scheme of the stack voltage detection algorithm is given in Fig. 4. As in any model-based diagnosis 
algorithm, also the basis of this one is the RNN model, which gives an estimate of what the stack voltages should be 
assuming normal operating conditions and normal stack condition. The stack voltage estimate then enables 
computing a difference between the observed current voltage value U [V] and the estimated voltage value Uest [V], 
the residual, which is used as information of what the stack’s condition is with respect to its normal condition. 
Ultimately, the problem boils down to (a) determining the limits within what the stack voltage, and thus its 
condition, is considered normal and (b) finding a good mechanism for detecting when these limits are crossed, i.e. 
filtering the residual. 

3.1. Normal limits (a) 

In the example case, the normal condition of the stack was set by a pre-determined range, within which the stack 
voltage should be at every operating condition. This range was then used to calculate how large a stack voltage 
residual (i.e. deviation amplitude) is allowed, assuming a certain error for the model and the measurement. Defining 
the numerical values for these properties was mainly based on engineering experience. 
In the example case, the deviation amplitude threshold Uth was set to 100 mV per stack (Table 1), which is ca. 0.2 % 
of the full stack voltage. The average residual error was estimated by logging the standard deviation (STD) of stack 
voltage Ustd for each stack always after activation of the detection algorithm and using this STD value in the limit-
crossing test. The stack voltage measurement STD was on average ca. 110mV, varying slightly per stack. The STD 
for the stack voltage estimate and the calculated residual were notably smaller, which is why the stack voltage 
measurement STD value was used in the algorithm.  
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Fig. 4. Illustration of the model-based stack voltage deviation detection scheme. 

3.2. Limit crossing detection (b) 

Because neither the stack voltage measurement nor the model output is noise-free, a fixed threshold value for 
detecting residual limit crossing would lead to many (very short) false alarms. Therefore, a combination of (i) 
residual sampling over a moving time window with statistical testing of this sample against the residual limit value 
and (ii) a temporal threshold for the statistical test result was utilized to obtain reliable yet crisp and timely alarms. 
Furthermore, this combination is also simple enough so that the number and meaning of free parameters remains 
conceivable to the operator.  

In practice, the statistical z-test is applied on the residual sample Ures = [U(t) – Uest(t), …, U(t – Nres) – Uest(t – 
Nres)] to check if the sample mean deviates from zero towards the negative more than the chosen threshold value Uth 
allows, with the chosen probability of 95%. The z-test is performed by calculating the z-score assuming a mean 
population value 0 equal to Uth and a standard deviation  computed based on the data collected right after a 
steady-state condition has been detected. Subsequently, if according to the z-test, the sample Ures is such that the 
corresponding z-score falls out of the 95 % confidence region (meaning that there is a less than 5% chance that the 
sample Ures belongs to a distribution that satisfies the null hypothesis, being that the residual mean is within the 
threshold), then the value of a counter, named talarm, is increased by the value Δt. If, however, the z-test is positive 
(i.e. residual sample mean is within given limits), the counter talarm is reset to zero. Finally, if the counter talarm 
reaches the value of tth (the residual having deviated continuously for so long), an alarm is raised.  

In the example case, the z-test was carried out on a sample of Nres = 24 residual data points (corresponding to a 
sample time window of 2 hours) and the z-test would have to give a positive indication of significant residual 
deviation continuously for over tth = 5 h of time before raising the alarm.  

3.3. Algorithm operation 

Although the RNN model enables estimating the stack voltage also during transient operation, the diagnosis 
algorithm was implemented only for steady state operation. To this end, a simple detection rule was used to enable 
or disable the diagnosis algorithm when a steady state or a transient, respectively, is detected. The detection of a 
steady operating state is achieved by simply comparing the moving average xMA(t) = αx(t) + (1 – α)xMA(t – Δt) (with 
0 < α < 1) of the system inputs x to their current (measured) value. If these two are (close to) equal – i.e. if |xMA(t) – 
x(t)| < β, where β is small – the system was considered to be in a steady state, otherwise not. (The approach is 
identical to monitoring the change of the moving average of the inputs). The observed variables could of course be 
other process measurements than just the inputs. 

In the example case, the load current is the only input that changes and is monitored. The parameter values α = ¼ 
and β = 0.1 A were used (see Table 1). 

When a steady state of operation is detected and the diagnosis algorithm is enabled, the statistical properties (in 
the example case only the standard deviation Ustd) of the measurements are logged for later use in the z-testing 
phase. An illustration of the algorithm operation is given in Fig. 5. 
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Fig. 5. Flow of stack voltage deviation detection algorithm. 

4. ALGORITHM TESTING 

The algorithm was tested with recorded real operating data from the case system, the Wärtsilä WFC20 system, 
located in Vaasa, Finland [5][6]. The system was operated with landfill gas and has a nominal electric power output 
of 20kW. The system contains a total of 24 SOFC stacks and the stack voltage of all stacks is measured. For the sake 
of clarity, however, the signals of only six stacks with identical current are presented in this paper.  

The test case consists of ca. 200 hours of operation, during which the stacks’ load current changes from 12 to 15 
amperes (at ca. 40 hours of operation). The stacks’ current and voltage trajectories (both simulated and 
experimental) in the test case are shown in Fig. 6. The voltage of stack 3 shows slight abnormal degradation at ca. 
120 hours of operation and a clear drop in the stack performance is seen at ca. 160 hours. 

The voltage deviation detection algorithm was tested by using a simulated online environment. In practice, the 
previously recorded real operating data from the multi-stack SOFC system was accessed through an identical data 
I/O interface as the one that is used in the actual hardware environment, in this case the OPC protocol [7]. The 
simulated online testing environment was implemented by using the Apros [8] and Matlab™ [9] software tools and 
a regular PC. Apros provided an access to the data through an OPC server and Matlab was used to run both the RNN 
stack voltage model (see Fig. 3) as well as the voltage deviation detection algorithm. The system was then operated 
in real world time or faster, with the data being read, the estimates and alarms being continuously computed. 
Typically, the test environment operated at an average speed of ca. 120 times the real world clock, thus illustrating 
online feasibility of the algorithm. 

The input data utilized by the RNN model for the stack voltage estimate computation includes the load current 
per stack (A), fuel flow ([V]/[t]) and composition (-), air flow ([V]/[t]) as well as the pressure [p] and temperature 
[T] measurements from the flow inlets [2]. As the aim of this work was to evaluate the RNN-based diagnosis 
algorithm and its online feasibility, ca. 100 hours from the beginning of the test case data set (considered healthy 
data) were used for the RNN training process to assure an appropriate RNN estimation accuracy.  

The values of all simulation and algorithm parameters in the test case are collected in Table 1. 
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Fig. 6. The current (black) and voltages (colors) of six stacks (see Fig. 2 and Fig. 3) in the test case. Bold lines indicate stack voltage estimates, 
the light lines are measurement data. 

5. RESULTS AND DISCUSSION 

The stack voltage estimation residual signals and the alarm signals (per stack) are shown in Fig. 7 (a) and Fig. 7 (b), 
respectively. In the examined case, the algorithm gives a crisp notification at ca. 150 hours of operation that the 
voltage of stack number 3 is deviating from the normal values in a manner that is considered significant by the 
operator. Looking at the residual of stack 3 in Fig. 7 (a), it is clear that the stack indicates abnormal behaviour 
already at the input step change at 40 hours. Based on the residual plot, it can be also said that the continuous 
deviation of the residual begins at ca. 120 hours. However, when looking only at the measured stack voltage in Fig. 
6, a significant deterioration of the stack voltage is only observed by the human eye at ca. 160 hours. Therefore it is 
reasonable to say that the alarm is sounded on time. 

The parameters – Given a fixed deviation amplitude threshold (Uth), the time instant at which an alarm is raised 
can be adjusted with the parameters Nres and tth. Increasing them both basically improves the detection reliability, but 
increases the lag-time between failure initiation and its “detection” and vice-versa. However, it is clear that Nres 
should not at least be larger than the number of samples measured during tth (i.e. ~tth/ . Such a configuration could 
cause the algorithm to miss, where an alarm should be raised. Furthermore, with the said limit for Nres, the parameter 
tth can be considered the parameter which dominates the frequency of raising false alarms, and in the contrary, Nres 
affects the most when an alarm is reset (since an alarm is always reset after one non-alarming residual sample being 
found).  
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Fig. 7. Stack voltage estimation residuals (a) and the voltage deviation detection output, i.e. the alarm (b).  

Table 1. Stack voltage deviation detection algorithm parameters.  

Parameter description Symbol Value Unit 

Sampling time Δt 300 S 

Residual sample size in limit-crossing z-test Nres 24 - 

Amplitude threshold for stack voltage deviation Uth 0.1 V 

Signal deviation threshold for limit-crossing z-test 
(varies by stack) 

Ustd ca. 0.1 V 

Temporal threshold for deviation before alarm tth 18000 s 

Moving average weight for steady state detection α 1/4 - 

Steady state threshold for current β 0.1 A 

6. CONCLUSIONS 

A simple algorithm for automatic detection of stack voltage deviations in a multi-stack fuel cell system was 
created and tested in a simulated online environment. The algorithm is a typical model-based FDI algorithm and is 
based on a recurrent neural network model, which is used to estimate the stack voltages in normal operating state. 
Operational data-sets from a real multi-stack SOFC system were used in the RNN network training and test, as well 
as in the detection-algorithm testing. The test results show that the algorithm is capable of detecting and identifying 
a deviation in a stack voltage, and that it is applicable for online use.  
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