260 research outputs found
Relativistic Effects in the Electromagnetic Current at GeV Energies
We employ a recent approach to the non-relativistic reduction of the
electromagnetic current operator in calculations of electronuclear reactions.
In contrast to the traditional scheme, where approximations are made for the
transferred momentum, transferred energy and initial momentum of the struck
nucleon in obtaining an on-shell inspired form for the current, we treat the
problem exactly for the transferred energy and transferred momentum. We
calculate response functions for the reaction at CEBAF (TJNAF)
energies and find large relativistic corrections. We also show that in Plane
Wave Impulse Approximation, it is always possible to use the full operator, and
we present a comparison of such a limiting case with the results incorporating
relativistic effects to the first order in the initial momentum of the struck
nucleon.Comment: 31 pages, 8 figures, Revte
Origin of Relativistic Effects in the Reaction D(e,e'p)n at GeV Energies
In a series of recent publications, a new approach to the non-relativistic
reduction of the electromagnetic current operator in calculations of
electro-nuclear reactions has been introduced. In one of these papers, the
conjecture that at energies of a few GeV, the bulk of the relativistic effects
comes from the current and not from the nuclear dynamics was made, based on the
large relativistic effects in the transverse-longitudinal response. Here, we
explicitly compare a fully relativistic, manifestly covariant calculation
performed with the Gross equation, with a calculation that uses a
non-relativistic wave function and a fully relativistic current operator. We
find very good agreement up to missing momenta of 400 MeV/c, thus confirming
the previous conjecture. We discuss slight deviations in cross sections for
higher missing momenta and their possible origin, namely p-wave contributions
and off-shell effects.Comment: 25 pages, 11 figure
A vacuum double-crystal spectrometer for reference-free highly charged ions X-ray spectroscopy
We have built a vacuum double crystal spectrometer, which coupled to an
electron-cyclotron resonance ion source, allows to measure low-energy x-ray
transitions in highly-charged ions with accuracies of the order of a few parts
per million. We describe in detail the instrument and its performances.
Furthermore, we present a few spectra of transitions in Ar, Ar
and Ar. We have developed an ab initio simulation code that allows us
to obtain accurate line profiles. It can reproduce experimental spectra with
unprecedented accuracy. The quality of the profiles allows the direct
determination of line width.Comment: 21 pages; Version
Covariant description of inelastic electron--deuteron scattering:predictions of the relativistic impulse approximation
Using the covariant spectator theory and the transversity formalism, the
unpolarized, coincidence cross section for deuteron electrodisintegration,
, is studied. The relativistic kinematics are reviewed, and simple
theoretical formulae for the relativistic impulse approximation (RIA) are
derived and discussed. Numerical predictions for the scattering in the high
region obtained from the RIA and five other approximations are presented
and compared. We conclude that measurements of the unpolarized coincidence
cross section and the asymmetry , to an accuracy that will distinguish
between different theoretical models, is feasible over most of the wide
kinematic range accessible at Jefferson Lab.Comment: 54 pages and 24 figure
Serum uri acid: neuroprotection in thrombolysis. The Bergen NORSTROKE study
<p>Abstract</p> <p>Background</p> <p>A possible synergic role of serum uric acid (SUA) with thrombolytic therapies is controversial and needs further investigations. We therefore evaluated association of admission SUA with clinical improvement and clinical outcome in patients receiving rt-PA, early admitted patients not receiving rt-PA, and patients admitted after time window for rt-PA.</p> <p>Methods</p> <p>SUA levels were obtained at admission and categorized as low, middle and high, based on 33° and 66° percentile values. Patients were categorized as patients admitted within 3 hours of symptom onset receiving rt-PA (rt-PA group), patients admitted within 3 hours of symptom onset not receiving rt-PA (non-rt-PA group), and patients admitted after time window for rt-PA (late group). Short-term clinical improvement was defined as the difference between NIHSS on admission minus NIHSS day 7. Favorable outcome was defined as mRS 0 - 3 and unfavorable outcome as mRS 4 - 6.</p> <p>Results</p> <p>SUA measurements were available in 1136 patients. Clinical improvement was significantly higher in patients with high SUA levels at admission. After adjustment for possible confounders, SUA level showed a positive correlation with clinical improvement (r = 0.012, 95% CI 0.002-0.022, p = 0.02) and was an independent predictor for favorable stroke outcome (OR 1.004; 95% CI 1.0002-1.009; p = 0.04) only in the rt-PA group.</p> <p>Conclusions</p> <p>SUA may not be neuroprotective alone, but may provide a beneficial effect in patients receiving thrombolysis.</p
Molecular Dynamics Simulations Suggest that Electrostatic Funnel Directs Binding of Tamiflu to Influenza N1 Neuraminidases
Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, as well as graphics processing unit (GPU)-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 “avian” and H1N1pdm “swine” flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms
Relativistic Dynamics and Extreme Mass Ratio Inspirals
It is now well-established that a dark, compact object (DCO), very likely a
massive black hole (MBH) of around four million solar masses is lurking at the
centre of the Milky Way. While a consensus is emerging about the origin and
growth of supermassive black holes (with masses larger than a billion solar
masses), MBHs with smaller masses, such as the one in our galactic centre,
remain understudied and enigmatic. The key to understanding these holes - how
some of them grow by orders of magnitude in mass - lies in understanding the
dynamics of the stars in the galactic neighbourhood. Stars interact with the
central MBH primarily through their gradual inspiral due to the emission of
gravitational radiation. Also stars produce gases which will subsequently be
accreted by the MBH through collisions and disruptions brought about by the
strong central tidal field. Such processes can contribute significantly to the
mass of the MBH and progress in understanding them requires theoretical work in
preparation for future gravitational radiation millihertz missions and X-ray
observatories. In particular, a unique probe of these regions is the
gravitational radiation that is emitted by some compact stars very close to the
black holes and which could be surveyed by a millihertz gravitational wave
interferometer scrutinizing the range of masses fundamental to understanding
the origin and growth of supermassive black holes. By extracting the
information carried by the gravitational radiation, we can determine the mass
and spin of the central MBH with unprecedented precision and we can determine
how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @
Living Reviews in Relativit
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Policy Recommendations for Meeting the Grand Challenge to Achieve Equal Opportunity and Justice
This brief was created forSocial Innovation for America’s Renewal, a policy conference organized by the Center for Social Development in collaboration with the American Academy of Social Work & Social Welfare, which is leading theGrand Challenges for Social Work initiative to champion social progress. The conference site includes links to speeches, presentations, and a full list of the policy briefs
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- …